Kinematics of General Spatial Mechanical Systems. M. Kemal Ozgoren

Читать онлайн.
Название Kinematics of General Spatial Mechanical Systems
Автор произведения M. Kemal Ozgoren
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119195764



Скачать книгу

of imagesfab(x, y, z)Surface function that describes the surface images in the link frame imagesimagesA reference frame with an orientation index a, whose origin is impliedimagesA reference frame images with a specific origin QimagesReference frame attached to imagesimagesBase frame, i.e. the reference frame attached to the base link imagesimagesGradient vector of the surface imagesimagesColumn matrix representation of images in the link frame imagesimagesAbbreviation for images of the last link imagesimagesHTM that represents the displacement from images to imagesimagesHTM that transforms coordinates from images to images; imagesimagesHessian matrix of the surface images expressed in the link frame imagesimagesAbbreviation for images of the link imagesimagesIdentity matrix; imagesjkNumber of joints with k degrees of relative freedomimagesA general Jacobian matriximagesThe joint (i.e. kinematic pair) between images and images; imagesimagesJoint between images and imagesimagesTip point Jacobian matriximagesWrist point Jacobian matrixLkkth leg (or limb) of a parallel manipulatorimagesA link denoted by the index aimageskth link of a manipulatorimagesThe last link (i.e. end‐effector) of a serial manipulator with m linksimagesA general square matrixmNumber of links and joints of a serial manipulatorimagesA general unit vectorimagesUnit column matrix that represents the twisted axis of images; imagesnLNumber of legs (or limbs) of a parallel manipulatorniklNumber of independent kinematic loopsnkpmNumber of distinct posture modes of the leg LknmNumber of moving or movable bodiesnpvNumber of primary variables; npv = μnpmNumber of distinct posture modes of a manipulatornsvNumber of secondary variables; nsv = λniklnvNumber of variables needed to describe the pose of a mechanical systemimagesCommon normal between the axes of images and imagesOOrigin of the base frame images; O = O0OkOrigin of the reference frame imagesPAn arbitrary point (in a general use)PTip point of a manipulator; P = Om for a serial manipulatorimagesTip point position vector with respect to the base frame; imagesimagesColumn matrix representation of images in the base frame; imagesQabContact point on the surface imagesimagesColumn matrix of the joint variablesqkGeneralized joint variable of images; qk = θk or qk = skRWrist point of a manipulator; R = Om − 1 for a serial manipulatorimagesMatrix representation of the rotation operator rot(