Название | Secondary Metabolites of Medicinal Plants |
---|---|
Автор произведения | Bharat Singh |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9783527825592 |
28 Misra, L.N., Dixit, A.K., and Wagner, H. (1995). N-Demethyl budmunchiamines from Albizzia lebbeck seeds. Phytochemistry 39: 247–249.
29 Muna, A.A. and Hartmut, L. (2012). Flavonoids from Sudanese Albizia zygia (Leguminosae, subfamily Mimosoideae), a plant with antimalarial potency. Afr. J. Tradit. Complement Altern. Med. 9: 56–58.
30 Noté, O.P., Mitaine-Offer, A.C., Miyamoto, T. et al. (2009). Cytotoxic acacic acid glycosides from the roots of Albizia coriaria. J. Nat. Prod. 72: 1725–1730.
31 Noté, O.P., Jihu, D., Antheaume, C. et al. (2015). Triterpenoid saponins from Albizia lebbeck (L.) Benth and their inhibitory effect on the survival of high grade human brain tumor cells. Carbohydr. Res. 404: 26–33.
32 Otani, H., Matsumori, M., and Hosono, A. (1991). Purification and some properties of a milk clotting protease from the young seeds of Albizia julibrissin. Anim. Sci. Technol. 62: 424–432.
33 Ovenden, S.P., Cao, S., leong, C. et al. (2002). Spermine alkaloids from Albizia adinocephala with activity against Plasmodium falciparum plasmepsin II. Phytochemistry 60: 175–177.
34 Pal, B.C., Achari, B., Yoshikawa, K., and Arihara, S. (1995). Saponins from Albizia lebbeck. Phytochemistry 38: 1287–1291.
35 Rukunga, G.M. and Waterman, P.G. (1996). New macrocyclic spermine (budmunchiamine) alkaloids from Albizia gummifera: with some observations on the structure-activity relationships of the budmunchiamines. J. Nat. Prod. 59: 850–853.
36 Rukunga, G.M. and Waterman, P.G. (2001). A new oleanane glycoside from the stem bark of Albizia gummifera. Fitoterapia 72: 140–145.
37 Shenta, A.A. and Al-Maliki, A.D.M. (2013). Isolation and identification of three alkaloids compounds from Albizia lebbeck L. leaves and study of their antimicrobial activity against pathogenic bacteria of urinary tracts inflammatory in vitro. J. Thi-Qar Sci. 3: 99–111.
38 Singab, A.N., Bahgat, D., Al-Sayed, E., and Eldahshan, O. (2015). Saponins from genus Albizia: phytochemical and biological review. Med. Aromat. Plants S3: 001.
39 Sohaily, S.I., Rahman, M.M., Khan, M.F., and Rashid, M.A. (2014). In vitro thrombolytic activity of Albizia lebbeck Benth. Bangladesh Pharm. J. 17: 215–216.
40 Steinrut, L., Itharat, A., and Ruangnoo, S. (2011). Free radical scavenging and lipid peroxidation of Thai medicinal plants used for diabetic treatment. J. Med. Assoc. Thai. 94: S178–S182.
41 Tripathi, P., Sen, C., and Das, P.K. (1979). Studies on the mechanism of action of Albizzia lebbeck, an Indian indigenous drug used in the treatment of atopic allergy. J. Ethnopharmacol. 1: 385–396.
42 Tripathi, R. and Das, P. (1977). Studies on anti-asthmatic and antianaphylactic activity of Albizzia lebbeck. Indian J. Pharmacol. 9: 189–194.
43 Ueda, M., Tokunaga, T., Okazaki, M. et al. (2003). Albiziahexoside: a potential source of bioactive saponin from the leaves of Albizzia lebbeck. Nat. Prod. Res. 17: 329–335.
44 Uma, B., Prabhakar, K., Rajendran, S., and Sarayu, Y.L. (2008). Antimicrobial activity of Albizzia lebbeck Benth against infectious diarrhoea. Internet J. Microbiol. 7: 1–5.
45 Yadava, R.N. and Reddy, V.M. (2001). A biologically active flavonol glycoside of seeds of Albizia julibrissin. J. Instit. Chemists 73: 195–199.
46 Zhang, H., Samadi, A.K., Rao, K.V. et al. (2011). Cytotoxic oleanane-type saponins from Albizia inundata. J. Nat. Prod. 74: 477–482.
47 Zheng, H., Wu, Y., Ding, J. et al. (2004). Invasive Plants of Asian Origin Established in the United States and Their Natural Enemies, vol. 1. United States Department of Agriculture.
48 Zheng, L., Zheng, J., Zhang, Q. et al. (2010). Three new oleanane triterpenoid saponins acetylated with monoterpenoid acid from Albizia julibrissin. Fitoterapia 81: 859–863.
49 Zheng, L., Zheng, J., Zhao, Y. et al. (2006). Three antitumor saponins from Albizia julibrissin. Bioorg. Med. Chem. Lett. 16: 2765–2768.
50 Zou, K., Tong, W.Y., Liang, H. et al. (2005). Diastereoisomeric saponins from Albizia julibrissin. Carbohydr. Res. 340: 1329–1234.
51 Zou, K., Zhao, Y., Tu, G. et al. (2000). Two diastereomeric saponins with cytotoxic activity from Albizia julibrissin. Carbohydr. Res. 324: 182–188.
2.9 Allium Species
2.9.1 Ethnopharmacological Properties and Phytochemistry
Allium cepa L. (Fam. – Amaryllidaceae) is considered as the largest genus of monocots (Li et al. 2010), known to be carminative and expectorant. The corms are used for treatment of diabetes, arthritis, colds and flu, stress, fever, coughs, headache, hemorrhoids, asthma, and arteriosclerosis in Iranian system of medicine (Jellin et al. 2000). The corms of Allium hirtifolium are used as remedy for rheumatic and inflammatory disorders (Jafarian et al. 2003); bulbs and pounded leaves are applied as paste on the head to treat cold, headache, and fever; the whole plant parts are used against stomachache and tuberculosis. The boiled leaves and crushed bulbs are applied to heal wounds and combat skin infections (Keusgen et al. 2006). Allium ascalonicum, Allium fistulosum, and Allium sativum showed hypoglycemic and antiseptic properties to heal wounds and anti-influenza A effects (Essman 1984; Jalal et al. 2007; Lee et al. 2012). The steroids of Allium chinense are cardioprotective (Ren et al. 2010), the A. cepa bulb is anthelmintic (Bidkar et al. 2012), and the methanolic extract of leaves of Allium stracheyi showed analgesic activities (Ranjan et al. 2010). 3,4-Dihydro-3-vinyl-1,2-dithiin, produced by a thermochemical reaction of allyl 2-propenethiosulfinate, exhibited the highest antioxidative activity (Higuchi et al. 2003). The hypolipidemic, antihypertensive, anti-diabetic, antithrombotic, anti-hyperhomocysteinemia effects, and to possess many other biological activities including antimicrobial, antioxidant, anticarcinogenic, antimutagenic, anti-asthmatic, immunomodulatory, and prebiotic activities (Corzo-Martínez et al. 2007; Ye et al. 2013; Siddiq et al. 2013). The hypoglycemic and hypolipidemic effects of A. cepa were associated with antioxidant activity, because it reduced superoxide dismutase activity in experimental rats (Campos et al. 2003).
Linolenic acid, linoleic acid, palmitic acid, palmitoleic acid, stearic acid, and oleic acid (Ebrahimi et al. 2009; Asgarpanah and Ghanizadeh 2012); hirtifoliosides A1/A2, B, C1/C2, and D; alliogenin 3-O-β-D-glucopyranoside; gitogenin 3-O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranoside; agapanthagenin; 3-O-β-D-glucopyranoside; kaempferol 3-O-β-D-rhamnopyranosyl-(1→2)-glucopyranoside; kaempferol 3-O-β-D-glucopyranosyl-(1→4)-glucopyranoside; kaempferol 3-O-glucopyranoside; and kaempferol-7-O-glucopyranoside have been isolated from A. hirtifolium flowers (Barile et al. 2005). Quercetin-O-glucoside, kaempferol-O-glucoside, quercetin-O-rhamnoside, isorhamnetin-O-hexoside, N-γ-glutamyl-S-allylcysteine, N-γ-glutamylisoleucine, N-γ-glutamyl-S-allylthiocysteine, N-γ-glutamylphenylalanine, and 40-O-glucoside were extracted from A. cepa and A. sativum (Mimaki et al. 1994; Lee and Mitchell 2011; Farag et al. 2017). The tuberoside J, (25R)-5α-spirostan-2α,3β,27-triol 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside; tuberoside K, (25R)-5α-spirostan-2α,3β,27-triol 3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside; and tuberoside L, 27-O-β-D-glucopyranosyl-(25R)-5α-spirostan-2α,3β,27-triol 3-O-α-D-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside, and tuberoside M, (2α,3β,5α,25S)-2,3,27-trihydroxyspirostane 3-O-α-L-rhamnopyranoyl-(1→2)-O-[α-L-rhamnopyranoyl-(1→4)]-β-D-glucopyranoside were identified from Allium tuberosum (Zou et al. 2001; Sang et al. 2001, 2002), while proto-eruboside B, proto-iso-eruboside B, eruboside B, and iso-eruboside B from A. sativum (Matsuura et al. 1988). Sativoside-B1, proto-desgalactotigonin, (25R)-26-O-β-D-glucopyranosyl-22-hydroxy-5α-furostane-3β, 6β, 26-triol 3-O-β-D-glucopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-glucopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside,