Название | The Rheology Handbook |
---|---|
Автор произведения | Thomas Mezger |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9783866305366 |
Pharmaceuticals, medicaments, bio-tech products, health and personal care products: Cough mixtures, wetting agents, nose sprays, vaccines, blood (hemo-rheology), blood-plasma substitutes, emulsions, saliva, mucus, hydrogels, skin creams, synovia fluid (e. g. for joints), hyaluronan acid (HA), ointments, vaseline, natural and synthetic membranes, silicone pads and cushions, dental molding materials, tooth filling, sponges, contact lenses, medical adhesives (e. g. for skin plasters, dental prothesis), denture fixative creams, hair, bone cement, implants, organic-inorganic compounds (hybrids); “biologically active” suspensions and gels (e. g. microalgae, bacteria); tribolgy: bacterial bio-films, biological cells, tissue engineered medical products (TEMPs), cartilage, catheters; interfacial rheology (e. g. emulsions, foams); powder rheology: tablets, disinfection powders
Agrochemicals: Plant or crop protection agents, solutions and dispersions of insecticides and pesticides, herbicides and fungicides
Detergents, home care products: Household cleaning agents, liquid soap, disinfectants, surfactant solutions, dispersions containing viscoelastic surfactants (VES), washing-up liquids, dish washing agents, laundry, fabric conditioners, washing powder concentrate, fat removers; interfacial rheology: emulsions, foams; powder rheology: superabsorbers (e. g. for diapers)
Surface technology: Polishing and abrasive suspensions; cooling emulsions; powder rheology, tribology: polishing powders, abrasive suspensions
Electrical engineering, electronics industry: Thick film pastes, conductive, resistance, insulating, glass paste, soft solder and screen-printing pastes; SMD adhesives (for surface mounted devices), insulating and protective coatings, de-greasing agents, battery fluids and pastes, coatings for electrodes
Petrochemicals: Crude oils, petroleum, solvents, de-icing agents, fuels, mineral oils, light and heavy oils, lubricating greases, paraffines, waxes, petrolatum, vaseline, natural and polymer-modified bitumen (PmB), asphalt binders, distillation residues; from coal and wood: tar and pitch; interfacial rheology (e. g. for emulsions); tribology: lubricating behavior
Ceramics and glass: Casting slips, kaolin and porcelain suspensions, glass powder and enamel pastes, glazes, plastically deformable ceramic pastes, glass melts, aero-gels, xero-gels, sol/gel materials, composites, organo-silanes (hybrids), basalt melts; powder rheology: ceramic powders (e. g. for additive manufacturing, AM), clay, loam
Construction materials: Self-levelling cast floors, plasters, mortar, cement suspensions, tile adhesives, dispersion paints, sealants, floor sheeting, natural and polymer-modified bitumen (PmB), and GTR (ground tire rubber) modified asphalt binder (for road pavement); bulk and powder rheology: sand, lime, chalk, gypsum
Metals: Melts of magnesium, aluminum, steel, alloys, slags; molding process in a semi-solid state (“thixo-forming”, “thixo-casting”, “thixo-forging”), compounds: ceramic fiber reinforced light-weight metals; powder rheology: metal powders (e. g. for additive manufacturing, AM)
Waste industry: Waste water, sewage sludges, animal excrements (e. g. of fishes, poultry, cats, dogs, pigs, cattle), residues from refuse incineration plants; powder rheology: sludges, filter cakes
Geology, soil mechanics, mining industry: Sludges from coal, peat, soil, drilling muds; river and lake sediment masses; soil deformation (e. g. due to mining operations, earthwork, canal and drain constructions, operations of vehicles in agriculture); drilling fluids, fracturing fluids (e. g. containing “flow improvers”); melts of volcanic stones (e. g. basalt), lava, magma, salt melts; powder rheology: coal powder, briquet manufacturing
Disaster control: Foam for fire extinguishers, deformation behavior of burning materials, soil deformation due to floods and earthquakes
Materials for special functions (e. g. as “smart fluids”): Magneto-rheological fluids (MRF), electro-rheological fluids (ERF), di-electric (DE) materials, self-repairing coatings, materials showing self-organizing superstructures (e. g. surfactants), dilatant fabrics (shock-absorbing, “shot-proof”), mesogenic fluids (MF), liquid crystals (LC), ionic fluids, micro-capsule paraffin wax (e. g. as “phase-change material” PCM), shape-memory materials (SPM); tribology: haptic sensation (when prooving the shape of the whole sample) or tactile sensation (when touching or scanning the surface); systems reacting by a change in shape due to an external excitation (e. g. temperature, light, pressure); powder rheology: materials used for additive manufacturing (AM)
It is pleasing that the first four editions of The Rheology Handbook, published in 2002, 2006, 2011 and 2014 sold out so unexpectedly quickly. It was positive to hear that the books met with approval, not only from laboratory technicians and practically oriented engineers, but also from teachers and professors of schools and colleges of applied sciences. Even at universities, The Rheology Handbook is meanwhile taken as an introductory teaching material for explaining the basics of rheology in lectures and practical courses, and as a consequence, many students worldwide are using it when writing their final paper or thesis. This textbook is also available in German language, and between 2000 and 2016 also here, five editions were published meanwhile (title: Das Rheologie Handbuch).
New in this fifth edition is Chapter 13 (shear tests with powders and bulk solids). Further present-day examples have been added resulting as well from contacts to industrial users as well as from corporation with several working groups, e. g. for developing modern standardizing measuring methods for diverse industrial branches. The references and standards have been updated (e. g. in Chapter 15).
I hope that The Rheology Handbook will prove itself a useful source of information for characterizing the above mentioned products in an application-oriented way, assuring their quality and helping to improve them wherever possible.
Stuttgart, June 2020
Thomas G. Mezger
1 Foreword
2 1 Introduction 1.1 Rheology, rheometry and viscoelasticity 1.2 Deformation and flow behavior 1.3 References
3 2 Flow behavior and viscosity 2.1 Introduction 2.2 Definition of terms 2.2.1 Shear stress 2.2.2 Shear rate 2.2.3 Viscosity 2.3 Shear load-dependent flow behavior 2.3.1 Ideal-viscous flow behavior 2.4 Types of flow illustrated by the Two-Plates model 2.5 References
4 3 Rotational tests 3.1 Introduction 3.2 Basic principles 3.2.1 Test modes-controlled shear rate (CSR) and controlled shear stress (CSS), raw data and rheological