Название | Henley's Twentieth Century Formulas, Recipes and Processes |
---|---|
Автор произведения | Various |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4057664126917 |
Upon leaving the brass objects immersed in the following mixture contained in corked vessels they at length acquire a very beautiful blue color:
Hepar of sulphur | 15 grains |
Ammonia | 75 grains |
Water | 4 ounces |
Miscellaneous Coloring Of Brass.
—Yellow to bright red: Dissolve 2 parts native copper carbonate with 1 part caustic soda in 10 parts water. Dip for a few minutes into the liquor, the various shades desired being obtained according to the length of time of the immersion. Green: Dissolve 1 part copper acetate (verdigris), 1 part blue vitriol, and 1 part alum in 10 parts of water and boil the articles therein. Black: For optical articles, photographic apparatus, plates, rings, screws, etc., dissolve 45 parts of malachite (native copper carbonate) in 1,000 parts of sal ammoniac. For use clean and remove the grease from the article by pickling and dip it into the bath until the coating is strong enough. The bath operates better and quicker if heated. Should the oxidation be a failure it should be removed by dipping into the brass pickle.
A verdigris color on brass is produced by treating the articles with dilute acids, acetic acid, or sulphuric acid, and drying.
Brown in all varieties of shades is obtained by immersing the metal in solutions of nitrates or ferric chloride after it has been corroded with dilute nitric acid, cleaned with sand and water, and dried. The strength of the solutions governs the deepness of the resulting color.
Violet is caused by immersing the thoroughly cleaned objects in a solution of ammonium chloride.
Chocolate color results if red ferric oxide is strewn on and burned off, followed by polishing with a small quantity of galena.
Olive green is produced by blackening the surface with a solution of iron in hydrochloric acid, polishing with galena, and coating hot with a lacquer composed of 1 part varnish, 4 parts cincuma, and 1 part gamboge.
A steel-blue coloring is obtained by means of a dilute boiling solution of chloride of arsenic, and a blue one by a treatment with strong hyposulphite of soda. Another formula for bluing brass is: Dissolve 10 parts of antimony chloride in 200 parts of water, and add 30 parts of pure hydrochloric acid. Dip the article until it is well blued, then wash and dry in sawdust.
Black is much used for optical brass articles and is produced by coating with a solution of platinum or auric chloride mixed with nitrate of tin.
Coloring Unpolished Brass.
—A yellow color of handsome effect is obtained on {129} unpolished brass by means of antimony-chloride solution. This is produced by finely powdering gray antimony and boiling it with hydrochloric acid. With formation of hydrogen sulphide a solution of antimony results, which must not be diluted with water, since a white precipitate of antimony oxychloride is immediately formed upon admixture of water. For dilution, completely saturated cooking-salt solution is employed, using for 1 part of antimony chloride 2 parts of salt solution.
Coloring Fluid For Brass.
—Caustic soda, 33 parts; water, 24 parts; hydrated carbonate of copper, 5.5 parts.
Dissolve the salt in water and dip the metal in the solution obtained. The intensity of the color will be proportional to the time of immersion. After removing the object from the liquid, rinse with water and dry in sawdust.
Black Color On Brass.
—A black or oxidized surface on brass is produced by a solution of carbonate of copper in ammonia. The work is immersed and allowed to remain until the required tint is observed. The carbonate of copper is best used in a plastic condition, as it is then much more easily dissolved. Plastic carbonate of copper may be mixed as follows: Make a solution of blue vitriol (sulphate of copper) in hot water, and add a strong solution of common washing soda to it as long as any precipitate forms. The precipitate is allowed to settle, and the clear liquid is poured off. Hot water is added, and the mass stirred and again allowed to settle. This operation is repeated six or eight times to remove the impurities. After the water has been removed during the last pouring, and nothing is left but an emulsion of the thick plastic carbonate in a small quantity of water, liquid ammonia is added until everything is dissolved and a clear, deep-blue liquid is produced. If too strong, water may be added, but a strong solution is better than a weak one. If it is desired to make the solution from commercial plastic carbonate of copper the following directions may be followed: Dissolve 1 pound of the plastic carbonate of copper in 2 gallons of strong ammonia. This gives the required strength of solution.
The brass which it is desired to blacken is first boiled in a strong potash solution to remove grease and oil, then well rinsed and dipped in the copper solution, which has previously been heated to from 150° to 175° F. This solution, if heated too hot, gives off all the ammonia. The brass is left in the solution until the required tint is produced. The color produced is uniform, black, and tenacious. The brass is rinsed and dried in sawdust. A great variety of effects may be produced by first finishing the brass before blackening, as the oxidizing process does not injure the texture of the metal. A satisfactory finish is produced by first rendering the surface of the brass matt, either by scratch-brush or similar methods, as the black finish thus produced by the copper solution is dead—one of the most pleasing effects of an oxidized surface. Various effects may also be produced by coloring the entire article and then buffing the exposed portions.
The best results in the use of this solution are obtained by the use of the so-called red metals—i.e., those in which the copper predominates. The reason for this is obvious. Ordinary sheet brass consists of about 2 parts of copper and 1 part of zinc, so that the large quantity of the latter somewhat hinders the production of a deep-black surface. Yellow brass is colored black by the solution, but it is well to use some metal having a reddish tint, indicating the presence of a large amount of copper. The varieties of sheet brass known as gilding or bronze work well. Copper also gives excellent results. Where the best results are desired on yellow brass a very light electroplate of copper before the oxidizing works well and gives an excellent black. With the usual articles made of yellow brass this is rarely done, but the oxidation carried out directly.
Black Finish For Brass.
—I.—A handsome black finish may be put on brass by the following process: Dissolve in 1,000 parts of ammonia water 45 parts of natural malachite, and in the solution put the object to be blackened, after first having carefully and thoroughly cleaned the same. After letting it stand a short time gradually warm the mixture, examining the article from time to time to ascertain if the color is deep enough. Rinse and let dry.
II.—The blacking of brass may be accomplished by immersing it in the following solution and then heating over a Bunsen burner or a spirit flame: Add a saturated solution of ammonium carbonate to a saturated copper-sulphate solution, until the precipitate resulting in the beginning has almost entirely dissolved. The immersion and heating are repeated until the brass turns dark; then it is brushed and dipped in negative varnish or dull varnish. {130}
To Give A Brown Color To Brass.
—I.—In 1,000 parts of rain or distilled water dissolve 5 parts each of verdigris (copper acetate) and ammonium chloride. Let the solution stand 4 hours, then add 1,500 parts of water. Remove the brass to be browned from its attachment to the fixtures and make the surface perfectly bright and smooth and free from grease. Place it over a charcoal fire and heat until it “sizzes” when touched with the dampened finger. The solution is then painted over the surface with a brush or swabbed on with a rag. If one swabbing does not produce a sufficient depth of color, repeat the heating and the application of the liquid until a fine durable brown is produced. For door plates, knobs, and ornamental