Essays Upon Heredity and Kindred Biological Problems. Weismann August

Читать онлайн.
Название Essays Upon Heredity and Kindred Biological Problems
Автор произведения Weismann August
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn



Скачать книгу

the Orinoco, concerning which the Indians said that it could not be understood because it spoke the language of an extinct tribe.

      It is therefore necessary to ask how far we can show that such long lives are really the shortest which are possible under the circumstances.

      Two factors must here be taken into consideration; first, that the young of birds are greatly exposed to destructive agencies; and, secondly, that the structure of a bird is adapted for flight and therefore excludes the possibility of any great degree of fertility.

      Many birds, like the stormy petrel, the diver, guillemot, and other sea-birds, lay only a single egg, and breed (as is usually the case with birds) only once a year. Others, such as birds of prey, pigeons, and humming-birds, lay two eggs, and it is only those which fly badly, such as jungle fowls and pheasants, which produce a number of eggs (about twenty), and the young of these very species are especially exposed to those dangers which more or less affect the offspring of all birds. Even the eggs of our most powerful native bird of prey, the golden eagle, which all animals fear, and of which the eyrie, perched on a rocky height, is beyond the reach of any enemies, are very frequently destroyed by late frosts or snow in spring, and, at the end of the year in winter, the young birds encounter the fiercest of foes, viz. hunger. In the majority of birds, the egg, as soon as it is laid, becomes exposed to the attacks of enemies; martens and weasels, cats and owls, buzzards and crows are all on the look out for it. At a later period the same enemies destroy numbers of the helpless young, and in winter many succumb in the struggle against cold and hunger, or to the numerous dangers which attend migration over land and sea, dangers which decimate the young birds.

      It is impossible directly to ascertain the exact number which are thus destroyed; but we can arrive at an estimate by an indirect method. If we agree with Darwin and Wallace in believing that in most species a certain degree of constancy is maintained in the number of individuals of successive generations, and that therefore the number of individuals within the same area remains tolerably uniform for a certain period of time; it follows that, if we know the fertility and the average duration of life of a species, we can calculate the number of those which perish before reaching maturity. Unfortunately the average length of life is hardly known with certainty in the case of any species of bird. Let us however assume, for the sake of argument, that the individuals of a certain species live for ten years, and that they lay twenty eggs in each year; then of the 200 eggs which are laid during the ten years, which constitute the lifetime of an individual, 198 must be destroyed, and only two will reach maturity, if the number of individuals in the species is to remain constant. Or to take a concrete example; let us fix the duration of life in the golden eagle at 60 years, and its period of immaturity (of which the length is not exactly known) at ten years, and let us assume that it lays two eggs a year;—then a pair will produce 100 eggs in 50 years, and of these only two will develope into adult birds; and thus on an average a pair of eagles will only succeed in bringing a pair of young to maturity once in fifty years. And so far from being an exaggeration, this calculation rather under-estimates the proportion of mortality among the young; it is sufficient however to enforce the fact that the number of young destroyed must reach in birds a very high figure as compared with the number of those which survive [See Note 1].

      If this argument holds, and at the same time the fertility from physical and other grounds cannot be increased, it follows that a relatively long life is the only means by which the maintenance of the species of birds can be secured. Hence a great length of life is proved to be an absolute necessity for birds.

      I have already mentioned that these animals demonstrate most clearly that physiological considerations do not by any means suffice to explain the duration of life. Although all vital processes take place with greater rapidity and the temperature of the blood is higher in birds than in mammals, yet the former greatly surpass the latter in length of life. Only in the largest Mammalia,—the whales and the elephants—is the duration of life equal to or perhaps greater than that of the longest lived birds. If we compare the relative weights of these animals, the Mammalia are everywhere at a disadvantage. Even such large animals as the horse and bear only attain an age of fifty years at the outside; the lion lives about thirty-five years, the wild boar twenty-five, the sheep fifteen, the fox fourteen, the hare ten, the squirrel and the mouse six years [See Note 2]; but the golden eagle, though it does not weigh more than from 9-12 pounds, and is thus intermediate as regards weight between the hare and the fox, attains nevertheless an age which is ten times as long. The explanation of this difference is to be found first in the much greater fertility of the smaller Mammalia, such as the rabbit or mouse, and secondly in the much lower mortality among the young of the larger Mammalia. The minimum duration of life necessary for the maintenance of the species is therefore much lower than it is among birds. Even here, however, we are not yet in possession of exact statistics indicating the number of young destroyed; but it is obvious that Mammalia possess over birds a great advantage in their intra-uterine development. In Mammalia the destruction of young only begins after birth, while in birds it begins during the development of the embryo. This distinction is in fact carried even further, for many mammals protect their young against enemies for a long time after birth.

      It is unnecessary to go further into the details of these cases, or to consider whether and to what extent every class of the animal kingdom conforms to these principles. Thus to consider all or even most of the classes of the animal kingdom would be quite impossible at the present time, because our knowledge of the duration of life among animals is very incomplete. Biological problems have for a long time excited less interest than morphological ones. There is nothing or almost nothing to be found in existing zoological text books upon the duration of life in animals; and even monographs upon single classes, such as the Amphibia, reptiles, or even birds, contain very little on this subject. When we come to the lower animals, knowledge on this point is almost entirely wanting. I have not been able to find a single reference to the age in Echinodermata, and very little about that of worms, Crustacea, and Coelenterata [See Note 4]. The length of life in many molluscan species is very well known, because the age can be determined by markings on the shell [See Note 5]. But even in this group, any exact knowledge, such as would be available for our purpose, is still wanting concerning such necessary points as the degree of fertility, the relation to other animals, and many other factors.

      Data the most exact in all respects are found among the insects [See Note 3], and to this class I will for a short time direct your special attention. We will first consider the duration of larval life. This varies very greatly, and chiefly depends upon the nature of the food, and the ease or difficulty with which it can be procured. The larvae of bees reach the pupal stage in five to six days; but it is well known that they are fed with substances of high nutritive value (honey and pollen), and that they require no great effort to obtain the food, which lies heaped up around them. The larval life in many Ichneumonidae is but little longer, being passed in a parasitic condition within other insects; abundance of accessible food is thus supplied by the tissues and juices of the host. Again, the larvae of the blow-fly become pupae in eight to ten days, although they move actively in boring their way under the skin and into the tissues of the dead animals upon which they live. The life of the leaf-eating caterpillars of butterflies and moths lasts for six weeks or longer, corresponding to the lower nutritive value of their food and the greater expenditure of muscular energy in obtaining it. Those caterpillars which live upon wood, such as Cossus ligniperda, have a larval life of two to three years, and the same is true of hymenopterous insects with similar habits, such as Sirex.

      Furthermore, predaceous larvae require a long period for attaining their full size, for they can only obtain their prey at rare intervals and by the expenditure of considerable energy. Thus among the dragon-flies larval life lasts for a year, and among many may-flies even two or three years.

      All these results can be easily understood from well-known physiological principles, and they indicate that the length of larval life is very elastic, and can be extended as circumstances demand; for otherwise carnivorous and wood-eating larvae could not have survived in the phyletic development of insects. Now it would be a great mistake to suppose that there