Девять принципов мироздания. Часть 2. Всеволод Всеволодович Протопопов

Читать онлайн.



Скачать книгу

симметрию. Выглядит это так:

      –Э-В-П П-В-С-

      Как мы видим, в этом состоянии обе формы Движения находятся в состоянии ожидания, причём соблюдается правило – одной Первоформе первого порядка соответствует одна связь. Первоформы первого порядка Духа при этом готовы, к приёму творческого импульса Духа, т.к. имеют свободные связи.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASwBLAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAiYBg4DASIAAhEBAxEB/8QAHgAAAQQDAQEBAAAAAAAAAAAAAAIDBAUBBgcJCAr/xABtEAABAwMCAwUFAggEDwsGCQ0BAAIDBAUREiEGMUEHEyJRYQgJFDJxI4EVOEJSdZGz0RYzN6EZJFZicnN0doKUlbGytNIXGDU2Q1RXkpPB0zQ5RlNVhCUnREVHd4Wio7XD1CZkg8Th8GNlwpb/xAAcAQEAAwEBAQEBAAAAAAAAAAAAAQIDBAUGBwj/xAAxEQACAgICAgICAQQCAgEFAQAAAQIRAxIhMQQTQVEiMhQFI1JhQpEzcRUGJGKBobH/2gAMAwEAAhEDEQA/APjUtAHIJLceQKWRkFNjZagdGk9AltYM/KmwdwnWHdVfYFhoB5BOtA8gmxg9UoHHVAOAhvQJwPTBOUppQEpj9tgE/HOG9AoTX6fVPsOcICxZUDA2CcFQ3yCrdeMJyKTJ3KAnyPbzwMpt8g0cgm3yg9UzLIdOAgJMbmnoE44NwNh+pQopCwZPNOiqDjg4CAccxp6BI0hpx/MlB4cE27xHJ2whaPYrwt3KUx7HcwFHf4hjKb0uYQRyQuS5WtPJoTJa0HGB+pOx507pBbk81SRDQ7EGhvIfqSCR+aP1JbAAEl0eAqECCWnoEDGrkFjRg+awcg7J8l4khjGnngp5jQ38kKMxxA5bJ1shICFidT6SOQ/UpAY082j9Sh0zuYUxr8FVKEiOFuPlCkMib+aP1JEIBaDlSG4aEBlkYGNsKSxuU2wZIUqOPKASIRnkpEcelvJDYznkpEce2EA3HHlPNhbn5QfuS2xAJ0N0hAYZTtPNo/UplNRt38I/UkQDJVjStG6BhDSgfkqZHC0DBbn6pcDcqQIg481cqMOpGEfKP1KO+ibj5R+pWYi6ZSXMAUolFHLS4Pyj9Sa7pv5o/Urt8TSeaifCZJ3Uklfo9MBGkHopjqbfCQ6lLfNUkCMIA8/KFh1K380KSGkO35JRAKqCA+kb+aEyaVu/hH6lZPYOYTRZgqrBXupWg/KE26FoPyj9SnPbjZR3g55KARHxtwfCFHe1vkFKk6hRpEBGe0FRnxA8wpZam3N552QEZsYHRONiafyQs6QDzTrGbZ5oBynpmnbA3U1lE0/kj9SxRxAqyiizgIWj2R20TcfKP1Js0zWuxpH6ldMo9TUxNRuDxhDYhx07RyaE+xjQ0DSP1JwQFm6dij2BKlOisuhtsAcdmD9SWy2lxPhwpkJGeSnU8rXnTgbJZkQI7YMbhPNtTG/kj9SuG04c3ITXcuafNG7BTvoWDbQPrhJ+AaD8g/Urcx43ITTgoIKuWjYWY0N/Um2ULM/IP1K3+GD+ZWGUmHYCAYoaFnefI39S2OCjDmtbzHkodLRgHJJBVzSjb6LOXRJGlohCfCAPooUlOHO3aCfMhXskZldhMfBgO2yXeStF8FovZ0V0NOwkDQ39SsYqSNo2jbn6KVT2KVo717S0HdOU0PeSFrtmjqtlIu4UQ2wNDv4tv6k61rOWhv6lKfStHVNd0WlQSzLGs/Mb+pPaIyAA1ufom+7OMDdLhaNQyd1KM5jpa0txgfRRpYWZ+Rv6lLKZk2WqOchuhZj5G/qSBTsIzob+pSzuUnu8LQEV1PH/AOrb+pYFNH+Y39SkOam87oAbTM/9W39SG0sefkb+pOBychAdlWTKsGU0bR/Ft/Up9HRsMjB3bcOI6JiPfZbHaaMT1NKwDcuGVVslH0B2bWSCm4Ol+yZlzeZaFrVRZYI463VGzcnoF0O2U4tfCkTOQc0Ln3EtY2CCbDtzlcOV3I6Yq4nIbrbooqyXDG4yegVc2ijcT4G/qVzWM7x73uJGSq132byG7jzXTjMJIjfAxnJ0N/UsCkaDtG39SmtGBtvnmnYmZ3IXYujnaojRwta0Asb+pT6ZsQAyxn6ky9uM+SS1+OuFJBO7qJ5+Rv6lllO1rh4WgfRNU5GRkqVJKGjYZWNFtgdTxBxy1v3qFU0zHP2Y39Sy6QvdkkhLGDyKUNkRfgGn8lv6lg21px4G/qU5jMdU6xuMqCdiLTU8UZ8UbM/RWkNVBC3AiZk+gUItaXbnCHRAyN05I6q0eyG7LmllimO8bf1LFyLKdpLWMDfooAmbTMyDuoVdWOq4jvt6LUqRq+aGRpLmN/Uqk00U3ysb+pPPLtJbjP1RQwaJMu2CpJl4dmG2qMAZjb+pMz00LAcRs/UrWolGnZVE0mp+Nlyzkd0CtkYwy/xbQPQLPdx/mN/UpEzANgo7vCfVcr5OiJgwxn8hv6liajY5uzG/qTjNz5J0HU0qCxrtbQtaRhjd/RQX0jRyjbn6LYqxgc4Kvli3+iyfZouinfSMJ3Y39SYfRsJ+Rv6lbSRHmo7oznyWsSbK91I3YaW/qTRpW5+Rv6laMh1ndYlhDFdFLIHwzDzYB9yT8MzV8jf1KY6MeaaLAHZB+i2SJvgZdBH+Y39SbdCwD5G/qUknbfmo8ji446LQysiyxR9Gt/UoromE/KP1KXOwgZGcqKzJfghBZkU7XD5QfuWGxMYDlo/UpWjSBjdYmiDR6qSxCkjYfyQoc9KCcho/UrA88bJl5JdjGAqsvHsrpqUCP5QFAkjLQcBX8sAkZgblRJ4Ghp2UHRFlDI52cb4SmNA5lSZ2HPJR2sOcLNl+0ZccjYp2KMHG26jP1NkAHJTGNcC0YWiMZA+H8oAAj0Vpw5Rmpr2PcG5B8lXzDDmtaSXnkFdcM008lW127XNI2HVbwdNnNnSUEy17aLbJNwVTHug3S8EkDotT7D+A6/tMuk1ns0bDUlu78Zwuq9tNPPUdmUc4aBEwYdpG+Uv2V+PbP2J8KT8Q1dKH1dWHMa8jl5Lzcj/uF8LcoUhfaHwVTdgvC8FnrHw1HEFe/Mxbg6WhcruFSJKmKaNjRgY5dEzxXxbce0bj64X6se+aGR5MTHnZo9EgZLnhvM7AeS9DHNy4OWcdWLOhzi7A39EsMaRjAB6JMEQ7xjJXYB22Uippvhq18DnDGNTCOq6+EisY7EZ4bLjW0GXOgABdp4F4C/hDT0Npkp80cmHynHNaPwBwvHd7pFPUMeXA6WNxsSvq2y2tvC9nbTmMR1UrQWOxjC4ZzPQwwUI6Mhix09ijht1rpo2xsGl8WOnmqy+vp6Imng01sxGe7xnQfJTa+5TEOoqEmS5P+eTqAtr7OeAoopO9qGCWofu9zhkgrklKys5emLRq/AvYPJxbXQ3XiGnjZSNOpkZAC7nQWWgtVM6jtlPBTd3gNDWjdZnY+lbHRtcQ0DYBLpmtjeWOGJOjlTauDx55ndkPi/hCDjGwvgqIY2VbG+F+kc189CyVXB92dHUt+0ids7HMdF9Swtkccl3hbzJXPe0632y+AugePjWDxBvVZSwLMnfxyer4nkbNxkbB2bcWUfElCyCcRtlaMDIC3ipmhoSGtgaf8FfLllrpbLXtlje6N8Z+UbArv3C/FMHEdFEZXtFUGjwgrHw/IeWTx5Ojh8vx7e0TZGzQTtDnQMB6ZaFiZlO4F1QYox9Am6oMkpXRAls+MbdFxvjOg4lp6jTTTOlgJ55XVLEpSaR58XfEvg6lWcU2C0au8niOnyAWpXXtVgfrZQNZI3+xXNX8MXCcA1LXvc7mClG2utPhihdrPMFV9BekbJB2lyOmLZaGNw/sFMHEFmvTC2rpI4n+ekLRaiOYOB0lr855KUWCSIaxh3mFRx04RKj8ovbnwFbLuBNRSsY5v5IxutdreEqm3MJfTNMQ/KDUn4qagOqGR2ryytp4e4zZWwmmuGCDtusnJo1SOfS2tlRGTG1ukHqFBns8cDMljc/RdNv/AAu2aL4u2tHdH5mhaLXytbI6GUFjhsMjqpU7JNfmpYqdmoMbv6KtlpWzHOgD7lZ1TJA/D8YBUOV5GwauiPIKasga7YQjbrhRm22IxOJjaD9FeuOo6SAPVMTU5Phaea1QNaZRDU46G/qWRGxrCNLc58lZPPwxc2QD7lAfEXsMgO2eS0+AhxkMYbpIbk+incPCKO5xxuja5rumFSulEbtUjiPoti4TpJnyy1ujLIx4cqFGyWyr4lnhpLvK1kLR9y1WuqG1EmoMaMdMK34orHVl5cYxqkcceHkFXycPz0rYnzPB7x3y9Vf1tFVy6ILIe9lblg0+eFsFusU10qGPp6VpEH5QbzUG7hlAxkQBLz8q6BwZObVb49Ry54y/CzktT0cceClobJW3u9t+NaIaWPpjZb/T9qcfDcTLfSws+HadDiG81qXEfFbYdUUGNJ5nqqBtTFWFoaAepys1Lks8WyZ2z+GfDlZDrbBG6pc3fLRzWt11+pJS5gp4x/ghadBVMp3NxD4jsCAlfEO75xfsuvHlo8ifi/lZIq3wyh+iBo38gq90TCf4tv6lZW9nxLypEtLACQXYcun2KRDx1wVHw8b/APk27eiXHQsfsGNH3KxNO2EZG+U5Q0DpX6v5go2RGgzTWZzQS1jdPqE++3Ma3eNpP0V1HSzAaWDIUlttLG6phgKvtp0RqaZUW+PW7wNH3KMaGHrp/Ut0q4aLRtgv6rXquKDXtstVkZGp54FISshBACxOkSThDZDlYOCOaQCooEhr/NL1qM12/NLyVFMD2tKa9MNzus5I5JTBMa7ZLEuOqiRvON0p0h3SmCSJsnmsOqNB5qH32BsUh82rqpoFh8ZnmVh1ScbKvbInBNhRTBPjqS4brD5gHt0nmojajZHeAkEc0pgsX1PdAZT7J9bAVUyy6yA4p+OfSAAVNErgntdkpUmdsBNUzw45O6kvcCMJRbYZdK5rEuN2pueqakOVmLOFnIXZJB2ThTeNgnD0VANOdhIMgysyHZNNiBSiyHmu1DYp5m4UYMLeSkQ56pTLWSIn6XKT3uXBRgzCcbklQRRZRS+EeSmMeT0VM2VzThS4aggc8BRQplwx4AA6qZHICqqJ+dJypkLxt4ghBax4OFIaBjAVa15PJylxTgHB5oCU1qWG5TbJBnGQVKY3IQDlOzfkrGBuMqJTtAO6sIgOiIMkQhSmjZMRNKktarFRTWhJdCXHKcaB1CcDTjKXRKI4psjcJHwrjnZTWvwE6wnqmxJUvpTnkkPhOOSvRC1w5ZSH0Yx8qhuwa86DY/50w6AhXktJjORsoEsW5CgFcG4+iw7CVIS1+CdkiRoI2KrQGnkZKjPwE8QcblMPalAhyjLj5KM5qmvA3CadG1KBBLd0hzNQ2UuSPHJNmPAzgpQIndHKejjyEtjCSnmxoV2JFCNxlXVPAdiAqejZiQeS2WkaGsaq2TF8k6kpC6P5cqQLSZDnSpdDCcAAYCuI4Q3AxzUWdFmo11rMLTgFQGUx7vOFvNfRd4z5VTvtZDiNPhU3ZEujXRGWlOQMdG/PQqwmoSx+42Tfd52xyUcmRPpJxoweay4HyTEEBaM+W6mw5kG+31UkpWRS0uOCEh0W52ypkjdJwNykiAlSTqyMIjjZOQRHWMhSWwloyn4Yt9xug1Y5HENI2T0TdH3JTct26J8wgtyBzVGrKvjgKd4a8F3IqdRRNdcmah4SVWBpBa3kcqwt+GXKIyS+AYVFwy2Jau2dRudgjdYGzRsHycwFzExFj5MDcFdV4m4hp6Lh2mip5GnUwA4XN42ag6QnOd8LZHXJqS4K8Bzk78O53TZL14lwBt5Kzja0sCtZi0VgiEY3UdzdL8qxqWN6KKWah5q6RlLngaB22Q9myUWhvPZYc/pnK1Ri4tEeQYykg+FOyDKbIwrX8FRp2wTJ+b70+7km9IJVgZacJ6mxg7JsNG6ep8B+MbK2vBDVkykjDpG581vXBttdUXeDbIDgtVtMLHuyRyXZ+yOwfEVnfSDUwcsrGRZRZvF9knFDT07AQNK0uaxSVEj/AIgYaeWV1urtLZqpmR4WhabxrVQxTCGAaHDnhcclbs7McfxOK8TWo01Q5jPkHIha6GbnPNbxxRWMe0tAy8cytOIBYXYwV1YvowyrXsjxDd2U814ao7zpOB1TD5XDqu1cHE3bJckgIKjnJKQHFzQUuPKAeic5vVSWuc4DKjsGcKQzYbKqaZSmOiJuRunGxgEbpuMEuUkMACvraIpmGsHNONZgFKjaCE8IgWn6KnrZNMqpWnXssB7oyEuoLmyFY1ah6qq4dBJiZD3gOUy2PS3HROEbptziCQtCw1K1rRnkmJngMy1PSZdsUzK0adllMvHsr5qhw2yoesmTdSKhhJ5KOW4OVxyTs7IMXK8EY6qORhyzI4jJ5puV2nByud8HTEdYcZTsfylM0/j5nKdI08io2LEWobqcmTT5ypUjep2KYZq1Yzss75JGu4GrSUiajaMnCkyPbG/cb4TMtRqHotokEN0Aj3UaVmoqfK7VjyUZzPFyV0yCFO3uwo4PMlS61pbzCjxxGRp22XRFWirkRpWh3I7JEbQXYzupzqU+SjmExv1YWlFLG30wI5qJJCIiThWbWuf9ExWRBzNhulFk+SNDh6zI0OKapw5jiCprIgcpRqVc8WnO26iEFzsdFZ3CPw5HNV8eQ3kqSRdRFR+AZKZn06fRZneQPJR5JPCqo0imRJmAlQn4ZKFNlcDndQ5CC7dUkzS9eGGgGVqkPka0tHVQ3PLQCDuCnjGZXMLRqPorxZWS+SdQ03f3GJx3a3cro/AVmFyvUgjbkAeS0ihjdE5uuItJHPC7p7PPDZqr2WSnIlaXB3ktE9Xsef5Lco0mN9pPDso7Kbs6RuWRg4b6rgPCk/4U7KauB4bJJTPyGnovrftgmp6jhG+2+jbltNETJjqV8U8JXiOy0F1t7mlprPk9F5uT99js8BqtWPWycwlsbgBkdFaCINkBG+VS0haycROOPJyunPbFhjSJJTsMLvwZIrsp5kHB/wDskWijjr7m+meCJZWnuh5lXtg4Nq7rBJ8SxzauOXQMjfCuOCOCKmGqo71cWGMUsjXNGObSV9J3Lg+3w1MdwpYw2GthD43dC7CvlyX0YQ/spSka52V8GQU9RH3