Название | Статистические методы, используемые в маркетинговых исследованиях |
---|---|
Автор произведения | Маргарита Акулич |
Жанр | Прочая образовательная литература |
Серия | |
Издательство | Прочая образовательная литература |
Год выпуска | 0 |
isbn | 9785448579400 |
Целью регрессионного анализа является цель предсказания (прогнозирования) ожидаемого усредненного значения результирующей переменной посредством соответствующего уравнения. В маркетинге довольно часто необходимо прогнозировать разные важные показатели (к примеру, объема продаж или прибыли, или числа клиентов и т.д.).
2.2 Регрессионный анализ нелинейный. Регрессия категориальная
Регрессионный анализ нелинейный
Под регрессией нелинейной принято понимать регрессионную модель зависимости переменной результативной от одной либо нескольких переменных объясняющих, выражаемую в виде нелинейной функции. Нелинейная модель (как и линейная) может быть парной и множественной.
Нелинейная регрессия согласно ее целям и задачам подобна регрессии линейной. Отличие обусловливается лишь формой связей и методами оценивания параметров. Выбрать форму связи зависимости нелинейного вида можно посредством: содержательного изучения исследуемого конкретного явления; опоры на итоги изучения взаимосвязи между переменными, к примеру, с применением графического метода.
Оценивание параметров нелинейной регрессии может базироваться: на линеаризации уравнения благодаря подходящим преобразованиям и оценки его параметров посредством применения метода наименьших квадратов; на оценке параметров на базе метода максимального правдоподобия и применения процедур оптимизационных методов.
Регрессии нелинейные различают согласно: включаемым в эти регрессии предикторам (такие нелинейного вида регрессии являются линейными по параметрам); включаемым в регрессии предикторам и подвергаемым оценке параметрам.
Если функции являются нелинейными по переменным объясняющим, возможно сведение их к линейным посредством замены переменных.
Если функции являются нелинейными по переменным-факторам и подвергаемым оцениванию параметрам, их сведение к линейным моделям происходит благодаря логарифмированию и замене переменных.
Если подобрать линеаризующее преобразование невозможно, для оценивания параметров прибегают к использованию методов нелинейной оптимизации на базе исходных данных.
Наилучшая нелинейная модель обычно выбирается на базе наименьшей стандартной остаточной ошибки, исчисленной для разных моделей. Если имеет место наличие ряда нелинейных моделей с сопоставимой точностью, рекомендуется