Insectivorous Plants. Darwin Charles

Читать онлайн.
Название Insectivorous Plants
Автор произведения Darwin Charles
Жанр Зарубежная классика
Серия
Издательство Зарубежная классика
Год выпуска 0
isbn



Скачать книгу

add that some of this tissue included points of black pigment, and these were not at all affected. As a control experiment, small portions of this tissue were left in water and on wet moss for the same length of time, and remained white and opaque. From these facts it is clear that areolar tissue is easily and quickly digested by the secretion; but that it does not greatly excite the leaves.

      Cartilage. – Three cubes (1/20 of an inch or 1.27 mm.) of white, translucent, extremely tough cartilage were cut from the end of a slightly roasted leg-bone of a sheep. These were placed on three leaves, borne by poor, small plants in my greenhouse during November; and it seemed in the highest degree improbable that so hard a substance would be digested under such unfavourable circumstances. Nevertheless, after 48 hrs., the cubes were largely dissolved and converted into minute spheres, surrounded by transparent, very acid fluid. Two of these spheres were completely softened to their centres; whilst the third still contained a very small irregularly shaped core of solid cartilage. Their surfaces were seen under the microscope to be curiously marked by prominent ridges, showing that the cartilage had been unequally corroded by the secretion. I need hardly say that cubes of the same cartilage, kept in water for the same length of time, were not in the least affected.

      During a more favourable season, moderately sized bits of the skinned ear of a cat, which includes cartilage, areolar and elastic tissue, were placed on three leaves. Some of the glands were touched with saliva, which caused prompt inflection. Two of the leaves began to re-expand after three days, and the third on the fifth day. The fluid residue left on their discs was now examined, and consisted in one case of perfectly transparent, viscid matter; in the other two cases, it contained some elastic tissue and apparently remnants of half digested areolar tissue.

      Fibro-cartilage (from between the vertebrae of the tail of a sheep). Moderately sized and small bits (the latter about 1/20 of an inch) were placed on nine leaves. Some of these were well and some very little inflected. In the latter case the bits were dragged over the discs, so that they were well bedaubed with the secretion, and many glands thus irritated. All the leaves re-expanded after only two days; so that they were but little excited by this substance. The bits were not liquefied, but were certainly in an altered condition, being swollen, much more transparent, and so tender as to disintegrate very easily. My son Francis prepared some artificial gastric juice, which was proved efficient by quickly dissolving fibrin, and suspended portions of the fibro-cartilage in it. These swelled and became hyaline, exactly like those exposed to the secretion of Drosera, but were not dissolved. This result surprised me much, as two physiologists were of opinion that fibro-cartilage would be easily digested by gastric juice. I therefore asked Dr. Klein to examine the specimens; and he reports that the two which had been subjected to artificial gastric juice were "in that state of digestion in which we find connective tissue when treated with an acid, viz. swollen, more or less hyaline, the fibrillar bundles having become homogeneous and lost their fibrillar structure." In the specimens which had been left on the leaves of Drosera, until they re-expanded, "parts were altered, though only slightly so, in the same manner as those subjected to the gastric juice as they had become more transparent, almost hyaline, with the fibrillation of the bundles indistinct." Fibro-cartilage is therefore acted on in nearly the same manner by gastric juice and by the secretion of Drosera.

      Bone. – Small smooth bits of the dried hyoidal bone of a fowl moistened with saliva were placed on two leaves, and a similarly moistened splinter of an extremely hard, broiled mutton-chop bone on a third leaf. These leaves soon became strongly inflected, and remained so for an unusual length of time; namely, one leaf for ten and the other two for nine days. The bits of bone were surrounded all the time by acid secretion. When examined under a weak power, they were found quite softened, so that they were readily penetrated by a blunt needle, torn into fibres, or compressed. Dr. Klein was so kind as to make sections of both bones and examine them. He informs me that both presented the normal appearance of decalcified bone, with traces of the earthy salts occasionally left. The corpuscles with their processes were very distinct in most parts; but in some parts, especially near the periphery of the hyoidal bone, none could be seen. Other parts again appeared amorphous, with even the longitudinal striation of bone not distinguishable. This amorphous structure, as Dr. Klein thinks, may be the result either of the incipient digestion of the fibrous basis or of all the animal matter having been removed, the corpuscles being thus rendered invisible. A hard, brittle, yellowish substance occupied the position of the medulla in the fragments of the hyoidal bone.

      As the angles and little projections of the fibrous basis were not in the least rounded or corroded, two of the bits were placed on fresh leaves. These by the next morning were closely inflected, and remained so, – the one for six and the other for seven days, – therefore for not so long a time as on the first occasion, but for a much longer time than ever occurs with leaves inflected over inorganic or even over many organic bodies. The secretion during the whole time coloured litmus paper of a bright red; but this may have been due to the presence of the acid super-phosphate of lime. When the leaves re-expanded, the angles and projections of the fibrous basis were as sharp as ever. I therefore concluded, falsely as we shall presently see, that the secretion cannot touch the fibrous basis of bone. The more probable explanation is that the acid was all consumed in decomposing the phosphate of lime which still remained; so that none was left in a free state to act in conjunction with the ferment on the fibrous basis.

      Enamel and Dentine. – As the secretion decalcified ordinary bone, I determined to try whether it would act on enamel and dentine, but did not expect that it would succeed with so hard a substance as enamel. Dr. Klein gave me some thin transverse slices of the canine tooth of a dog; small angular fragments of which were placed on four leaves; and these were examined each succeeding day at the same hour. The results are, I think, worth giving in detail.]

      [Experiment 1. – May 1st, fragment placed on leaf; 3rd, tentacles but little inflected, so a little saliva was added; 6th, as the tentacles were not strongly inflected, the fragment was transferred to another leaf, which acted at first slowly, but by the 9th closely embraced it. On the 11th this second leaf began to re-expand; the fragment was manifestly softened, and Dr. Klein reports, "a great deal of enamel and the greater part of the dentine decalcified."

      Experiment 2. – May 1st, fragment placed on leaf; 2nd, tentacles fairly well inflected, with much secretion on the disc, and remained so until the 7th, when the leaf re-expanded. The fragment was now transferred to a fresh leaf, which next day (8th) was inflected in the strongest manner, and thus remained until the 11th, when it re-expanded. Dr. Klein reports, "a great deal of enamel and the greater part of the dentine decalcified."

      Experiment 3. – May 1st, fragment moistened with saliva and placed on a leaf, which remained well inflected until 5th, when it re-expanded. The enamel was not at all, and the dentine only slightly, softened. The fragment was now transferred to a fresh leaf, which next morning (6th) was strongly inflected, and remained so until the 11th. The enamel and dentine both now somewhat softened; and Dr. Klein reports, "less than half the enamel, but the greater part of the dentine decalcified."

      Experiment 4. – May 1st, a minute and thin bit of dentine, moistened with saliva, was placed on a leaf, which was soon inflected, and re-expanded on the 5th. The dentine had become as flexible as thin paper. It was then transferred to a fresh leaf, which next morning (6th) was strongly inflected, and reopened on the 10th. The decalcified dentine was now so tender that it was torn into shreds merely by the force of the re-expanding tentacles.]

      From these experiments it appears that enamel is attacked by the secretion with more difficulty than dentine, as might have been expected from its extreme hardness; and both with more difficulty than ordinary bone. After the process of dissolution has once commenced, it is carried on with greater ease; this may be inferred from the leaves, to which the fragments were transferred, becoming in all four cases strongly inflected in the course of a single day; whereas the first set of leaves acted much less quickly and energetically. The angles or projections of the fibrous basis of the enamel and dentine (except, perhaps, in No. 4, which could not be well observed) were not in the least rounded; and Dr. Klein remarks that their microscopical structure was not altered. But this could not have been expected, as the decalcification was not complete in the three specimens which were carefully examined.

      Fibrous Basis of Bone. – I at first concluded, as already stated, that the secretion