Как не ошибаться. Сила математического мышления. Джордан Элленберг

Читать онлайн.
Название Как не ошибаться. Сила математического мышления
Автор произведения Джордан Элленберг
Жанр Математика
Серия
Издательство Математика
Год выпуска 2014
isbn 978-5-00100-466-0



Скачать книгу

и не приблизились к разрешению нашего спора. Что представляет собой число 0,999… на самом деле? Это 1? Или это некое число, на бесконечно малую величину меньшее 1, – число, принадлежащее к совершенно необычному классу чисел, который даже не был открыт сотню лет назад?

      Правильный ответ состоит в том, чтобы вообще не задавать такого вопроса. Что представляет собой число 0,999… на самом деле? По всей вероятности, некую сумму такого рода:

      0,9 + 0,09 + 0,009 + 0,0009 + …

      Но что она значит? Настоящая проблема заключается в злополучном троеточии. Не может быть никаких споров по поводу того, что значит сумма двух, трех или сотни чисел. Перед нами всего лишь математическое обозначение физического процесса, который мы прекрасно понимаем: возьмите сотню куч чего угодно, смешайте их вместе и определите, сколько и чего у вас получилось. Но бесконечно большое количество? – это совсем другая история. В реальном мире вы не можете получить бесконечно большое количество множеств. Чему равно числовое значение бесконечной суммы? Его не существует – пока мы не зададим это значение. В чем и состояла новаторская идея Огюстена Луи Коши, который в 1820-х годах ввел в математический анализ понятие предела[47].

      Лучше всего это объясняет Годфри Гарольд Харди в книге Divergent Series («Расходящиеся ряды»), опубликованной в 1949 году:

      Это замечание сейчас тривиально: современному математику и не придет в голову, что какое-либо соединение математических символов может иметь «смысл» до того, как ему придан смысл с помощью определения. Но это не было тривиальностью даже для наиболее выдающихся математиков восемнадцатого века. Определения не были в их обычае; для них не было естественно говорить: «под X мы понимаем Y». С некоторыми оговорками… верно будет сказать, что математики до Коши спрашивали не «как определить 1 − 1 + 1 − 1 + …?», а «что есть 1 − 1 + 1 − 1 + …?»; и этот склад мышления приводил их к ненужным затруднениям и спорам, зачастую носившим, по существу, чисто словесный характер[48].

      И это не просто непринужденный математический релятивизм. Тот факт, что мы можем придать какой угодно смысл той или иной последовательности математических символов, совсем не означает, что нам следует это делать. В математике, как и в жизни, есть как хороший, так и плохой выбор. В математическом контексте правильным считается выбор, позволяющий устранить ненужные затруднения, не создавая новых.

      Чем больше членов ряда вы суммируете, тем ближе сумма 0,9 + 0,09 + 0,009 + … приближается к 1. И эта сумма никогда не превысит данное значение. Какое бы плотное оцепление мы ни устроили вокруг числа 1, в конце концов эта сумма после определенного конечного количества шагов пройдет сквозь него, но так и не выйдет наружу с другой стороны. По утверждению Коши, при таких обстоятельствах нам следует просто установить значение бесконечной суммы равным 1. Затем он приложил немало усилий, чтобы доказать,



<p>47</p>

Подобно всем математическим прорывам, теория пределов Коши имела предшественников; в частности, определение Коши было во многом созвучно с концепцией границ величины погрешности биномиального ряда Д’Аламбера. Однако нет никаких сомнений, что работа Коши представляла собой переломный момент: после него анализ стал таким, каким мы его знаем сейчас.

<p>48</p>

Г. Г. Харди. Расходящиеся ряды / Пер. с англ. Д. А. Райкова. М.: Изд-во иностранной литературы, 1951. С. 19. Прим. ред.