Активные данные. Философское программирование. Сергей Федорович Толкачев

Читать онлайн.
Название Активные данные. Философское программирование
Автор произведения Сергей Федорович Толкачев
Жанр Компьютеры: прочее
Серия
Издательство Компьютеры: прочее
Год выпуска 0
isbn 9785005680914



Скачать книгу

и пр. Здесь разносторонний программист обязательно должен добавить: «Класс машин, помимо энергетических, должен включать подкласс информационных машин, которые тоже умеют кое-что делать». Эх, как было бы удобно всё формализовать в виде классов, методов и отношений, если бы объектно-ориентированный подход приняли в качестве основы для рассуждений все остальные непрограммисты! Мечты…

      Из повседневного опыта известно, что слова могут быть декларативными или императивными, и они могут определять или инициировать действия. Например, набор слов: «Чтобы разогреть воду, включи плиту» будет понятен любому современному человеку, и даже компьютеру, хотя несколько столетий назад, эта фраза вызвала бы недоумение – ведь в то время для того, чтобы разогреть воду, нужно было разжечь огонь. Естественно, что один и тот же результат может быть получен в итоге различных последовательностей действий. А слова, как виртуальный мостик, связывают исполнительные механизмы, способные к конкретным действиям, с одной стороны, с процедурами или знаниями, задающими эти последовательности, с другой. Но и суть программирования заключается в формулировании чего бы то ни было – словами! Будь то математическая формула или экономическая модель, программист обязан передать их описание компьютеру при помощи комбинации слов. Желательно только не забывать при этом, о чем на основании своего опыта предупреждают известные мастера слов – математики: «Слова – орудия опасные» (Герман Вейль).

      Мы употребляем подобные слова повсеместно и никаких сомнений не возникает, пока мы не зададимся вопросом, а что, собственно, есть действие, и чем знание отличается от данных и информации? Рассуждая над смыслом слов, нужно быть готовым к тому, что, как бы глубоко и формально мы не старались уточнить их определения, всё равно, согласно К. Гёделю и В. Гейзенбергу, они будут недостаточно точными, неполными или противоречивыми. Общепринятый подход к получению более «точных определений» основан на использовании более строгих математических формализаций. Мы же, напротив, будем рассчитывать на неформальное и интуитивное понимание, основанное на «глубоком многослойном обучении». Сравнительно недавно появилась новая теория – «Intelligent Learning» и один из её авторов, Владимир Вапник, высказал предположение, что если фактические знания передаются в сочетании с ассоциативно связанными «посторонними» идеями, то обучение происходит более эффективно, модификация знаний о предметной области не разрушает модель, а адаптация к новому происходит быстрее и легче.

      Слово делать относится как раз к такой категории интуитивно понятных, и положительный ответ на вопрос «Может ли машина делать?», особенно если речь идет о физических действиях, не должен вызвать каких-либо сомнений (разве что филологических). Но и у программистов не видно серьезных оснований для возражений по поводу способности информационных машин – ведь стоит загрузить программу в компьютер, как в нем начинаются действия. Как в физике, так и в информатике,