Название | Nitric Oxide in Plants |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119800149 |
11 Besson-Bard, A., Pugin, A., and Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annual Review of Plant Biology 59: 21–39.
12 Bethke, P.C., Badger, M.R., and Jones, R.L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell 16: 332–341.
13 Bethke, P.C., Libourel, I.G., and Jones, R.L. (2006). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany 57: 517–526.
14 Brouquisse, R. (2019). Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany 70: 4319–4322.
15 Butler, A.R., Flitney, F.W., and Williams, D.L.H. (1995). NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist’s perspective. Trends in Pharmacological Sciences 16: 18–22.
16 Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A. et al. (2017). Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science 22: 163–174.
17 Chen, Z.H., Wang, Y., Wang, J.W. et al. (2016). Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. The New Phytologist 209: 1456–1469.
18 Corpas, F.J., González-Gordo, S., Cañas, A. et al. (2019). Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70: 4391–4404.
19 Courtois, C., Besson, A., Dahan, J. et al. (2008). Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany 59: 155–163.
20 Delledonne, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology 8: 390–396.
21 Del Río, L.A., Corpas, F.J., and Barroso, J.B. (2004).Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783–792.
22 Falak, N., Imran, Q.M., Hussain, A. et al. (2021). Transcription factors as the “blitzkrieg” of plant defense: a pragmatic view of nitric oxide’s role in gene regulation. International Journal of Molecular Sciences 22: 522.
23 Fatima, A., Husain, T., Suhel, M. et al. (2021). Implication of nitric oxide under salinity stress: the possible interaction with other signaling molecules. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10255-5.
24 Gao, Z., Wang, Y., Chen, G. et al. (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications 10: 1–10.
25 Gong, Z., Xiong, L., Shi, H. et al. (2020). Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63: 635–674.
26 González-Moscoso, M., González-García, Y., Martínez-Villegas, N.V. et al. (2021). Nitric oxide modified growth, nutrient uptake and the antioxidant defense system in tomato seedlings stressed with arsenic. Theoretical and Experimental Plant Physiology 33: 205–233.
27 Gupta, K.J., Fernie, A.R., Kaiser, W.M. et al. (2011). On the origins of nitric oxide. Trends in Plant Science 16: 160–168.
28 Hall, J.L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1–11.
29 Heath, M.C. (2000). Hypersensitive response-related death. Plant Molecular Biology 44: 321–334.
30 Hediji, H., Kharbech, O., Massoud, M.B. et al. (2021). Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environmental and Experimental Botany 186: 104432.
31 Hernández, J.A. (2019). Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences20.
32 Imran, Q.M., Falak, N., Hussain, A. et al. (2016). Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana. Frontiers in Plant Science 7: 1712.
33 Jedelská, T., Luhová, L., and Petřivalský, M. (2021). Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. Journal of Experimental Botany 72: 848–863.
34 Kaur, G., Sharma, P., Rathee, S. et al. (2021). Salicylic acid pre-treatment modulates Pb 2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. Environmental Science and Pollution Research 28 (37): 51989–52000.
35 Kaya, C., Ashraf, M., Alyemeni, M.N. et al. (2020a). Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiologia Plantarum 168: 345–360.
36 Kaya, C., Ashraf, M., Alyemeni, M.N. et al. (2020b). The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicology and Environmental Safety 196: 110483.
37 Khator, K. and Shekhawat, G.S. (2019). Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.) Czern. Vegetos 32: 583–592.
38 Kolbert, Z., Szőllősi, R., Feigl, G. et al. (2021). Nitric oxide signalling in plant nanobiology: current status and perspectives. Journal of Experimental Botany 72: 928–940.
39 Kopyra, M. (2004). The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiologiae Plantarum 26: 459–473.
40 Kopyra, M., Stachoń-Wilk, M., and Gwóźdź, E.A. (2006). Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiologiae Plantarum 28: 525–536.
41 Lambers, H., Finnegan, P.M., Laliberté, E. et al. (2011). Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiology 156: 1058–1066.
42 Li, C., Song, Y., Guo, L. et al. (2018). Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environmental Pollution 236: 296–303.
43 Li, X., Pan, Y., Chang, B. et al. (2016). NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Frontiers in Plant Science 6: 1203.
44 Li, X., Wu, Z., Xiao, S. et al. (2020). Characterization of abscisic acid (ABA) receptors and analysis of genes that regulate rutin biosynthesis in response to ABA in Fagopyrum tataricum. Plant Physiology and Biochemistry 157: 432–440.
45 Lora, J., Laux, T., and Hormaza, J.I. (2019). The role of the integuments in pollen tube guidance in flowering plants. New Phytologist 221: 1074–1089.
46 Lou, Y., Yang, Y., Hu, L. et al. (2015). Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology 24: 1330–1340.
47 Mannucci, A., Mariotti, L., Castagna, A. et al. (2020). Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation. Plant Physiology and Biochemistry 148: 291–301.
48 Mohn, M.A., Thaqi, B., and Fischer-Schrader, K. (2019). Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants 8: 67.
49 Mur, L.A., Kumari, A., Brotman, Y. et al. (2019). Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco. Journal of Experimental Botany 70: 4571–4582.
50 Mur, L.A., Mandon, J., Persijn, S. et al. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5.
51 Nagel, M., Alqudah, A.M., Bailly, M. et al. (2019). Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant, Cell & Environment 42: 1318–1327.
52 Neill, S.J., Desikan, R., and Hancock, J.T. (2003). Nitric