Название | Против богов. Укрощение риска |
---|---|
Автор произведения | Питер Бернстайн |
Жанр | Управление, подбор персонала |
Серия | |
Издательство | Управление, подбор персонала |
Год выпуска | 1996 |
isbn | 978-5-9693-0143-6 |
Новая система счисления пробудила интеллектуальную активность в странах к западу от Индии. Багдад, уже тогда бывший средоточием арабской культуры, стал центром математических исследований, и халифы приглашали еврейских ученых для перевода трудов таких выдающихся математиков, как Птолемей и Евклид. Математическая литература получила широкое распространение в арабской империи и около IX или X века дошла до Испании.
Вообще говоря, если уж быть точными, на Западе был один человек, предложивший цифровую систему счисления еще за 200 лет до индусов. Около 250 года после Рождества Христова в Александрии математик по имени Диофант написал трактат, в котором доказывал выгодность замены буквенной системы счисления настоящими числами6.
О самом Диофанте мало что известно, но то немногое, что мы знаем, поразительно. Историк математики Герберт Уоррен Тернбулл (Turnbull) приводит посвященную ему греческую эпиграмму, в которой говорится: «Его детство длилось 1/6 его жизни; борода выросла у него на 1/12 позднее; на 1/7 после этого он женился, и через пять лет у него родился сын, который прожил вдвое меньше отца, а отец пережил сына на четыре года». В каком возрасте умер Диофант?7 Ответ на этот вопрос любители алгебры могут найти в конце главы.
Диофанту принадлежит далеко ведущая идея алгебраической символики – использование символов вместо чисел; ему, правда, не удалось воспользоваться ею в полной мере. Он сетует, что «невозможно решение абсурдного уравнения 4 = 4х + 20»8. Невозможно? Абсурдное уравнение? Уравнение приводит к отрицательному значению: х = –4. Без понятия ноля, которого Диофант не знал, понятие отрицательного числа логически невозможно.
Замечательные новшества Диофанта, кажется, были проигнорированы последующими поколениями. Прошло полторы тысячи лет, пока его работы были замечены и должным образом оценены: его трактат сыграл центральную роль в расцвете алгебры в XVII веке. Всем известные сегодня линейные алгебраические уравнения вида а + bx = с носят его имя.
Главным изобретением индо-арабской системы счисления явилось понятие ноля – sunya, как его называли индусы, или cifr по-арабски9. Слово дошло до нас как cipher, что означает 'пусто' и относится к пустой линейке на счетах[11].
Людям, использующим ряды камешков для подсчета убитых животных, прошедших дней или пройденного пути, освоить понятие ноля было крайне трудно. Для таких подсчетов ноль не нужен. Как отмечает английский философ XX века Альфред Норт Уайтхед (Whitehead),
относительно ноля следует заметить, что в повседневной жизни мы этим понятием не пользуемся. Никому не придет в голову купить ноль рыбы. В известном смысле ноль – это самое деликатное из всех числительных, и потребность в нем возникает у нас только на более высоком уровне мышления10.
Слова
11
Русское слово цифра тоже арабского происхождения.