Название | Fractures in the Horse |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119431756 |
37 37 Matcuk, G.R., Mahanty, S.R., Skalski, M.R. et al. (2016). Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg. Radiol. 23: 365–375.
38 38 Markel, M.D., Snyder, J.R., Hornof, W.J., and Meagher, D.M. (1987). Nuclear scintigraphic evaluation of third metacarpal and metatarsal bone fractures in three horses. J. Am. Vet. Med. Assoc. 191: 75–77.
39 39 McGilvray, K.C., Unal, E., Troyer, K.L. et al. (2015). Implantable microelectromechanical sensors for diagnostic monitoring and post‐surgical prediction of bone fracture healing. J. Orthop. Res. 33: 1439–1446.
40 40 Tull, T.M. and Bramlage, L.R. (2011). Racing prognosis after cumulative stress‐induced injury of the distal portion of the third metacarpal and third metatarsal bones in Thoroughbred racehorses: 55 cases (2000–2009). J. Am. Vet. Med. Assoc. 238: 1316–1322.
41 41 Rossignol, F., Vitte, A., and Boening, J. (2014). Use of a modified transfixation pin cast for treatment of comminuted phalangeal fractures in horses. Vet. Surg. 43: 66–72.
42 42 Watkins, JP. (2019). Use of transfixation devices for fracture management in the horse. Presented at: AOVET North America, Advanced Techniques in Equine Fracture Management; Columbus, OH.
43 43 Clark, D., Nakamura, M., Miclau, T., Marcucio, R. (2017 Dec 16). Effects of aging on fracture healing. Curr. Osteoporos. Rep. [Internet]. [Cited 2018 Jan 30]; 15(6): 601–608. Available from: http://www.ncbi.nlm.mih.gov/pubmed/26143915.
44 44 Marquez‐Lara, A., Hutchinson, I. D., Nuñez, F., Smith, T. L., Miller, A. N. (2016 Mar 15). Nonsteroidal anti‐inflammatory drugs and bone‐healing. JBJS Rev. [Internet]. [cited 2018 Feb 15]; 4(3): e41–414. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27500434.
45 45 Rohde, C., Anderson, D.E., Bertone, A.L., and Weisbrode, S.E. (2000). Effects of phenylbutazone on bone activity and formation in horses. Am. J. Vet. Res. 61: 537–543.
46 46 Marquez‐Lara, A., Hutchinson, I.D., Nuñez, F. et al. (2016). Nonsteroidal anti‐inflammatory drugs and bone‐healing. JBJS Rev. 4: 41–414.
47 47 Gallaher, H.M., Butler, J.R., Wills, R.W. et al. (2019). Effects of short‐ and long‐term administration of nonsteroidal anti‐inflammatory drugs on osteotomy healing in dogs. Vet. Surg. 48: 1318–1329.
48 48 Kawcak, C. E. (2014). Update on the use of bisphosphates in equine practice. Sunrise Session: Educational Partners Dechra presented at; Am Assoc Equine Pract; Salt Lake City, UT.
49 49 Ott, S.M. (2005). Long‐term safety of bisphosphonates. J. Clin. Endocrinol. Metab. 90: 1897–1899.
50 50 Dehghani, f., Conrad, A., Kohl, A. et al. (2004). Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp. Neurol. 189: 241–251.
51 51 Monkonnen, J., Simila, J., and Roger, M.J. (1998). Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro. Life Sci. 62: 95–102.
52 52 McLellan, J. (2017). Science‐in‐brief: bisphosphonates use in the racehorse: safe or unsafe. Equine Vet. J. 49: 404–407.
53 53 Mashiba, T., Turner, C.H., Hirano, T. et al. (2001). Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagies. Bone 28: 524–531.
54 54 Kidd, L.J., Cowling, N.R., Wu, A.C. et al. (2001). Bisphosphonate treatment delays stress fracture remodelling in the rat ulna. J. Orthop. Res. 29: 1827–1833.
55 55 Milgrom, C., Fiestone, A., Novack, V. et al. (2004). The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone 35: 418–424.
56 56 Sloan, A.V., Martin, J.R., Li, S., and Li, J. (2010). Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone 47: 235–240.
57 57 Hegde, V., Jo, J. E., Andreopoulou, P., Lane, J. M. (2016 Mar 29). Effect of osteoporosis medications on fracture healing. Osteoporos Int [Internet]. [cited 2018 Feb 16]; 27(3): 861–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26419471.
58 58 Kates, S. L., Ackert‐Bicknell, C. L. (2016 Jan). How do bisphosphonates affect fracture healing? Injury [Internet]. [cited 2018 Jan 30]; 47: S65–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26768295.
59 59 Pontos, I., Georgouli, T., Bird, H., Kontakis, G., Giannoudis, P. V. (2001 Nov 9). The effect of antibiotics on bone healing: current evidence. Expert Opin. Drug Saf. [Internet]. [cited 2018 Jan 30]; 10(6): 935–945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21824037.
60 60 Tang, L., Zhao, C., Xiong, Y., Wang, A. (2010 Jun 24). Preparation, antibacterial properties and biocompatibility studies on vancomycin‐poli (D,L)‐lactic loaded plates. Int. Orthop. [Internet]. [cited 2018 Jan 30]; 34(5): 755–759. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19466408.
61 61 Rathbone, C. R., Cross, J. D., Brown, K. B., Murray, C. K., Wenke, J. C. (2011 Jul). Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res. [Internet]. [cited 2018 Jan 30]; 29(7): 1070–1074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21567453.
62 62 Desai, B. M. (2007 Apr). Osteobiologics. Am. J. Orthop. (Belle Mead NJ) [Internet]. [cited 2018 Feb 17]; 36 (4 Suppl): 8–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17547352.
63 63 Roffi, A., Di Matteo, B., Krishnakumar, G. S., Kon, E., Filardo, G. (2017 Feb 26). Platelet‐rich plasma for the treatment of bone defects: from pre‐clinical rational to evidence in the clinical practice. A systematic review. Int. Orthop. [Internet]. [cited 2018 Jan 30]; 41(2): 221–37. Available from: http://link.springer.com/10.1007/s00264‐016‐3342‐9.
64 64 Di Matteo, B., Filardo, G., Kon, E., Marcacci, M. (2015 Apr 17). Platelet‐rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review. Musculoskelet. Surg. [Internet]. [cited 2018 Jan 30]; 99(1): 1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25323041.
65 65 Tiedeman, J. J., Connolly, J. F., Strates, B. S., Lippiello, L. (1991 Jul). Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin. Orthop. Relat. Res. [Internet]. [cited 2018 Jan 30]; (268): 294–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2060222.
66 66 Gómez‐Barrena, E., Rosset, P., Müller, I., Giordano, R., Bunu, C., Layrolle, P. et al. (2011 Jun). Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J. Cell Mol. Med. [Internet]. [cited 2018 Jan 30]; 15(6): 1266–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21251219.
67 67 Healey, J. H., Zimmerman, P. A., McDonnell, J. M., Lane, J. M. (1990 Jul). Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin. Orthop. Relat. Res. [Internet]. [cited 2018 Jan 30]; 256: 280–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2364614.
68 68 Im, G‐I. (2017). Clinical use of stem cells in orthopaedics. Eur. Cell. Mater. [Internet]. [cited 2018 Jan 30]; 33: