Название | Fractures in the Horse |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119431756 |
61 61 Le Jeune, S.S., Macdonald, M.H., Stover, S.M. et al. (2003). Biomechanical investigation of the association between suspensory ligament injury and lateral condylar fracture in Thoroughbred racehorses. Vet. Surg. 32: 585–597.
62 62 Riggs, C. and Boyde, A. (1999). Effect of exercise on bone density in distal regions of the equine third metacarpal bone in 2‐year‐old thoroughbreds. Equine Vet. J. Suppl. 31: 555–560.
63 63 Riggs, C.M., Whitehouse, G.H., and Boyde, A. (1999). Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet. J. 31: 140–148.
64 64 Pinchbeck, G. and Murphy, D. (2001). Cervical vertebral fracture in three foals. Equine Vet. Educ. 13: 8–12.
65 65 Ehrle, A., Jones, S., Klose, P., and Lischer, C. (2012). Atypical radiologic appearance of a second cervical vertebral fracture in a horse. J. Equine Vet. Sci. 32: 309–313.
66 66 Muno, J., Samii, V., Gallatin, L. et al. (2009). Cervical vertebral fracture in a Thoroughbred filly with minimal neurological dysfunction. Equine Vet Educ. 21: 527–531.
67 67 Firth, E., Rogers, C., Doube, M., and Jopson, N. (2005). Musculoskeletal responses of 2‐year‐old Thoroughbred horses to early training. 6. Bone parameters in the third metacarpal and third metatarsal bones. N. Z. Vet. J. 53: 101–112.
68 68 Nixon, A.J., Stover, S.M., and Nunamaker, D.M. (2019). Third metacarpal dorsal stress fractures. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 452–464. Hoboken, NJ: Wiley.
69 69 Nunamaker, D.M., Butterweck, D.M., and Provost, M.T. (1990). Fatigue fractures in Thoroughbred racehorses: relationships with age, peak bone strain, and training. J. Orthop. Res. 8: 604–611.
70 70 Wirtz, D.C., Schiffers, N., Pandorf, T. et al. (2000). Critical evaluation of known bone material properties to realize anisotropic FE‐simulation of the proximal femur. J. Biomech. 33: 1325–1330.
71 71 Keaveny, T.M. and Hayes, W.C. (1993). A 20‐year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng. 115: 534–542.
72 72 Keaveny, T. and Hayes, W. (1992). Mechanical properties of cortical and trabecular bone. In: Bone, 7e (ed. B. Hall), 285–344. Boca Raton, FL: CRC Press.
73 73 Selker, F. and Carter, D.R. (1989). Scaling of long bone fracture strength with animal mass. J. Biomech. 22: 1175–1183.
74 74 Sherman, K.M., Miller, G.J., Wronskl, T.J. et al. (1995). The effect of training on equine metacarpal bone breaking strength. Equine Vet. J. 27: 135–139.
75 75 Dowthwaite, J.N., Flowers, P.P.E., Spadaro, J.A., and Scerpella, T.A. (2007). Bone geometry, density, and strength indices of the distal radius reflect loading via childhood gymnastic activity. J. Clin. Densitom. 10: 65–75.
76 76 Daegling, D.J. (2002). Estimation of torsional rigidity in primate long bones. J. Hum. Evol. 43: 229–239.
77 77 Edwards, W.B., Schnitzer, T.J., and Troy, K.L. (2013). Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J. Biomech. 46: 1655–1662.
78 78 Haider, I.T., Schneider, P., Michalski, A., and Edwards, W.B. (2018). Influence of geometry on proximal femoral shaft strains: implications for atypical femoral fracture. Bone 110: 295–303.
79 79 Setterbo, J.J., Garcia, T.C., Campbell, I.P. et al. (2009). Hoof accelerations and ground reaction forces of Thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces. Am. J. Vet. Res. 70: 1220–1229.
80 80 Malekipour, F., Hitchens, P.L., Whitton, R.C., and Lee, P.V.‐S. (2020). Effects of in vivo fatigue‐induced subchondral bone microdamage on the mechanical response of cartilage‐bone under a single impact compression. J. Biomech. 100: 109–594.
81 81 Davies, H.M.S., McCarthy, R.N., and Jeffcott, L.B. (1993). Surface strain on the dorsal metacarpus of thoroughbreds at different speeds and gaits. Cells Tissues Organs 146: 148–153.
82 82 Evans, G.P., Behiri, J.C., Vaughan, L.C., and Bonfield, W. (1992). The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet. J. 24: 125–128.
83 83 Kulin, R.M., Jiang, F., and Vecchio, K.S. (2011). Effects of age and loading rate on equine cortical bone failure. J. Mech. Behav. Biomed. Mater. 4: 57–75.
84 84 Rubin, C.T. and Lanyon, L.E. (1982). Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 101: 187–211.
85 85 Riggs, C.M. (2002). Fractures – a preventable hazard of racing thoroughbreds? Vet. J. 163: 19–29.
86 86 Bailey, C.J., Reid, S.W.J., Hodgson, D.R. et al. (1998). Flat, hurdle and steeple racing: risk factors for musculoskeletal injury. Equine Vet. J. 30: 498–503.
87 87 Martig, S., Chen, W., Lee, P.V.S., and Whitton, R.C. (2014). Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 46: 408–415.
88 88 Pinchbeck, G.L., Clegg, P.D., Boyde, A. et al. (2013). Horse‐, training‐ and race‐level risk factors for palmar/plantar osteochondral disease in the racing Thoroughbred. Equine Vet. J. 45: 582–586.
89 89 Kawcak, C.E., McIlwraith, C.W., Norrdin, R.W. et al. (2000). Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses. Am. J. Vet. Res. 61: 1252–1258.
90 90 Cui, W. (2002). A state‐of‐the‐art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7: 43–56.
91 91 Carter DaH, W.C. (1977). Compact bone fatigue damage – I. residual strength and stiffness. J. Biomech. 10: 325–337.
92 92 Carter DaH, W.C. (1977). Compact bone fatigue damage: a microscopic examination. Clin. Orthop. Relat. Res.: 265–274.
93 93 Carter, D.R., Caler, W.E., Spengler, D.M., and Frankel, V.H. (1981). Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52: 481–490.
94 94 Hastings A, Gibson LJ, Moore TLA, Cheng DW, Guo XE. Endurance limit for bovine trabecular bone. Paper presented at: Orthopedic Research Society 2004 Annual Meeting; Mar 7–10, 2004; San Francisco, CA, USA.
95 95 Ganguly, P., Moore, T.L.A., and Gibson, L.J. (2004). A phenomenological model for predicting fatigue life in bovine trabecular bone. J. Biomech. Eng. 126: 330–339.
96 96 Zioupos, P. and Currey, J.D. (1994). The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29: 978–986.
97 97 Fleck, C. and Eifler, D. (2003). Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J. Biomech. 36: 179–189.
98 98 Schaffler, M., Radin, E., and Burr, D. (1989). Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10: 207–214.
99 99 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1996). in vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J. Orthop. Res. 14: 794–801.
100 100 Burr, D.B. and Martin, R.B. (1989). Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186: 186–216.
101 101 Reilly, G.C., Currey, J.D., and Goodship, A.E. (1997). Exercise of young Thoroughbred horses increases impact strength of the third metacarpal bone. J. Orthop. Res. 15: 862–868.
102 102 Ritchie, R. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.
103 103 Ritchie, R.O. (1999). Mechanisms of fatigue‐crack propagation in ductile and brittle solids. Int. J. Fract. 100: 55–83.
104 104 Malik, C., Stover, S., Martin, R., and Gibeling, J.