HPLC optimal einsetzen. Группа авторов

Читать онлайн.
Название HPLC optimal einsetzen
Автор произведения Группа авторов
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527828524



Скачать книгу

      32 Guiochon, G., Gonnord, M.F., Zakaria, M., Beaver, L.A. und Siouffi, A.M. (1983). Chromatography with a two-dimensional column. Chromatographia 17 (3): 121–124, https://doi.org/10.1007/BF02271033.

      33 Davydova, E., Schoenmakers, P.J. und Vivó-Truyols, G. (2013). Study on the performance of different types of threedimensional chromatographic systems. Journal of Chromatography A 1271 (1): 137–143, https://doi.org/10.1016/j.chroma.2012.11.043.

      1 1) http://www.multidlc.org/literature/2DLC-Applications.

      2 2) www.multidlc.org/megatable.

      2

      Do you HILIC? Mit Massenspektrometrie? Dann bitte systematisch

       Thomas Letzel 1

      1 Analytisches Forschungsinstitut für Non-Target Screening GmbH, Augsburg, Deutschland

      Die „hydrophile Interaktionsflüssigchromatographie“ (d. h. HILIC für „Hydrophilie Interaction Liquid Chromatography“) wurde erstmals im Jahre 1990 von Andrew Alpert [1] namentlich so erwähnt. Seither gab es ein regelmäßiges Auf und Ab in der Nutzung dieser Technik; beispielsweise nimmt nun nach Jahren der Stagnation seit einiger Zeit der Einsatz von HILIC wieder sehr stark zu.

      Letztlich resultierten die „Downs in der Nutzung von HILIC“ aus einem manchmal missverstandenen Retentionsmechanismus beziehungsweise der oftmals nicht systematischen Vorgehensweise in der Methodenoptimierung. In diesem Kapitel wird versucht, eine mögliche Systematik zur Methodenoptimierung zu skizieren. Denn gerade für (sehr) polare Moleküle, d. h. in erster Linie Moleküle mit negativem log D-(log P)-Wert und somit auch per Definition (sehr) gut wasserlöslichen Molekülen, drängt sich eine Trennung mit der HILIC geradezu auf.

      Zur besseren Einordnung und Diskussion der oft verwendeten log D-Werte von Analyten und der entsprechenden Nutzung passender Techniken in der Trennung von Molekülen zeigt Abb. 2.1 ein (nicht vollständiges) Bild mit der klassischen RPLC, der polaritätserweiterten RPLC, der HILIC und der IC. Damit wird direkt ersichtlich, dass Moleküle im physikochemischen Übergang von „besser oktanollöslich“ zu „besser wasser-löslich“ (d. h. im log D-Wertebereich um 0) sowie „geladene“ und „ungeladene“ Moleküle mit mehreren Techniken getrennt werden können. Weitere Trenntechniken wie CE, GC und SFC werden dabei nicht berücksichtigt (u. a. da diese auch unterschiedliche Gerätetechnologie benötigen würden), gibt es aber auch noch.

      Betrachtet man sich nun also zunächst die zu trennenden Substanzen bzw. deren Polarität bzw. deren log D-Wert bzw. deren pKs-Wert, so gibt es oft starke Gründe, diese mit der HILIC zu retardieren bzw. zu trennen, beispielsweise dann, wenn der log D-Wert im (sehr) negativen Bereich liegt und ein geladenes Molekül vorliegt. Abbildung 2.2 zeigt mit Toluol (und seinem log P-Wert von 2,5) und 4-Hydroxybenzoesäure (und einem log D (pH 7)-Wert von –1,24 und einem gleichzeitigen pKs-Wert von 4,54) ein prominentes Beispiel zum Vergleich in der Trennung mit RPLC und mit HILIC [2]. Das unpolare Molekül Toluol wird bei einem pH-Wert von 7,0 also grundsätzlich besser auf einer RPLC-Säule retardiert und das polare Molekül 4-Hydroxybenzoesäure auf einer HILIC-Säule.

      Abb. 2.1 Schema der Polaritätsbereiche von Trenntechniken. Reversed-Phase-Flüssig- chromatographie (RPLC) ist einsetzbar zur Trennung von polaren und nichtpolaren löslichen Analyten. Polar modifizierte RPLC ermöglicht die erweiterte Trennung tiefer in den polareren Bereich. Zur Trennung von sehr polaren Molekülen kommt typischerweise die hydrophile Interaktionsflüssigchromatographie (HILIC) zum Einsatz sowie die Ionenchro- matographie für geladene Analyten.

      4-Hydroxybenzoesäure kann beispielsweise dem pH-Wert der mobilen Phase entsprechend einen bei pH 3 log D-Wert von 1,31, bei pH 7 von –1,24 oder bei pH 12 von –4,14 besitzen (berechnet mit dem log D Predictor [3]) und hat einen pKs1-Wert von 4,54 [4]. Somit ist es entscheidend, unter welchen pH-Wert-Bedingungen man die mobile Phase in der HILIC betreibt (siehe Abschn. 2.2, c) pH-Wert), denn die beeinflussen somit die Polarität und den Ladungszustand eines zu trennenden Moleküls direkt. In diesem Fall könnte man zur Analytik des Moleküls bei einem pH-Wert 3 auf die RPLC zurückgreifen, bei höheren pH-Werten ist HILIC empfehlenswert. Es ist also auch naheliegend, dass der pH-Wert für den entsprechenden Ladungszustand der Moleküle stabil gehalten werden muss oder wie – in dem Buchkapitel zur „Gradientenelution in HILIC“ beschrieben [5] – bewusst zur Ladungsänderung von Molekülen in pH-Gradienten genutzt werden kann.

      In dem hier vorliegenden Buchkapitel beschreibe ich den derzeitigen Stand des Wissens um den Trennmechanismus von Molekülen unter Berücksichtigung der Wasserschicht auf der Partikeloberfläche (und somit dem Verteilungsgleichgewicht der Moleküle zwischen mobiler Phase und der wässrigen Phase an der Oberfläche) und den Adsorptionseigenschaften der stationären Phase sowie den eventuell vorhandenen elektrostatischen Wechselwirkungsstellen der stationären Phase nicht. Anstatt dessen sei an dieser Stelle hierzu auf eigene frühere Arbeiten [2, 6] oder aber auch auf die exzellenten Arbeiten von Kolleg:innen [7–9] verwiesen. Auch wenn hier darauf verzichtet wird, die Kenntnis der mechanistischen Grundlagen ist wesentlich, um eine Methodenentwicklung systematisch durchführen zu können. Nehmen Sie sich also die Zeit, sich dieses Wissen anzueignen.

      Abb. 2.2 Toluol und 4-Hydroxybenzoesäure als prominentes Beispiel [2] zum Vergleich in der Trennung mittels RPLC und mittels HILIC.

      Kommt HILIC nun aufgrund der passenden Polarität der zu trennenden Substanzen als Trenntechnik in die engere Auswahl, fällt die Entscheidung letztlich darauf, diese zu nutzen – und haben Sie sich (in der weiterführenden Literatur) mit dem Trennmechanismus vertraut gemacht? Falls ja, dann steht einer erfolgreichen Umsetzung nichts mehr im Wege.

      In diesem Kapitel liegt der Schwerpunkt gleichzeitig auf massenspektrometrischer Kompatibilität der HILIC-Bedingungen, was eine Methodenoptimierung letztlich aber auch ein bisschen vereinfacht (da einige Parameter durch die massenspektrometrische Detektion vorgegeben sind; siehe Abschn. 2.3).

      Um eine erfolgreiche Optimierung sicherzustellen, sollte die Durchführung der Schritte bzw. Parameter immer in der folgenden Reihenfolge durchgeführt werden:

      1 I. Stationäre Phase

      2 II. Mobile Phase mita) Organischem Laufmittelb) Salzenc) pH-Wert

      3 III. Weitere Einstellungen bzw. Bedingungen speziell für massenspektrometrische Detektion

      Die Vielfalt der auf dem Markt befindlichen stationären HILIC-Phasen nimmt seit Jahren stetig zu, sodass es mittlerweile eine große Auswahl an (auch speziell für die HILIC entwickelte) Materialien gibt. Allerdings ist es für den Anwender ohne weitere Kenntnis der Eigenschaften seiner zu trennenden Substanzen (siehe dazu noch mal den vorherigen