Название | Congo Basin Hydrology, Climate, and Biogeochemistry |
---|---|
Автор произведения | Группа авторов |
Жанр | География |
Серия | |
Издательство | География |
Год выпуска | 0 |
isbn | 9781119656999 |
Christopher is grateful to the American Geophysical Union (AGU) grant sponsored by NASA and National Science Foundation in collaboration with The Ohio State University and several other international agencies. This funding supported his keynote speech at the AGU Chapman conference held in Washington DC, USA, in September 2018. The authors further thank NASA for the three GRACE mascon products, NOAA for the satellite precipitation and sea surface temperature, and GRDC for the discharge data used in this study.
REFERENCES
1 Achard, F., Eva, H. D., Stibig, H.‐J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.‐P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002. doi: 10.1126/science.1070656
2 Agutu, N., Awange, J., Ndehedehe, C., Kirimi, F., and Kuhn, M. (2019). GRACE‐derived groundwater changes over Greater Horn of Africa: temporal variability and the potential for irrigated agriculture. Science of The Total Environment, 693, 133467. doi: 10.1016/j.scitotenv.2019.07.273
3 Agutu, N., Awange, J., Zerihun, A., Ndehedehe, C., Kuhn, M., & Fukuda, Y. (2017). Assessing multi‐satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sensing of Environment, 194(0), 287–302. doi: 10.1016/j.rse.2017.03.041
4 Ahmed, M., & Wiese, D. N. (2019). Short‐term trends in Africa’s freshwater resources: Rates and drivers. Science of The Total Environment, 695, 133843. doi: 10.1016/j.scitotenv.2019.133843
5 Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O’Loughlin, F., et al. (2016). Opportunities for hydrologic research in the congo basin. Reviews of Geophysics, 54(2), 378–409. doi: 10.1002/2016RG000517
6 Alsdorf, D., Han, S.‐C., Bates, P., & Melack, J. (2010). Seasonal water storage on the amazon floodplain measured from satellites. Remote Sensing of Environment, 114(11), 2448–2456. doi: 10.1016/j.rse.2010.05.020
7 Anyah, R., Forootan, E., Awange, J., & Khaki, M. (2018). Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products. Science of The Total Environment, 635, 1405–1416. doi: 10.1016/j.scitotenv.2018.04.159
8 Bahaga, T. K., Fink, A. H., & Knippertz, P. (2019). Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. International Journal of Climatology, 39(5), 2765–2785. https://doi.org/10.1002/joc.5986
9 Barnett, T. P., & Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115(9), 1825–1850. doi: 10.1175/1520‐0493(1987)115<1825:OALOMA>2.0.CO;2
10 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two‐dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33–45. doi: 10.1016/j.jhydrol.2010.03.027
11 Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resources Management, 28, 1045–1060. doi: 10.1007/s11269‐014‐0533‐2
12 Becker, M., Papa, F., Frappart, F., Alsdorf, D., Calmant, S., da Silva, J. S., et al. (2018). Satellite‐based estimates of surface water dynamics in the Congo River Basin. International Journal of Applied Earth Observation and Geoinformation, 66, 196–209. https://doi.org/10.1016/j.jag.2017.11.015
13 Bell, J. P., Tompkins, A. M., Bouka‐Biona, C., & Sanda, I. S. (2015). A process‐based investigation into the impact of the Congo basin deforestation on surface climate. Journal of Geophysical Research: Atmospheres, 120(12), 5721–5739. doi: 10.1002/2014JD022586
14 Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541–560. doi: 10.1175/1520‐0442(1992)005<0541:AIOMFF>2.0.CO;2
15 Bunn, S. E., Thoms, M. C., Hamilton, S. K., & Capon, S. J. (2006). Flow variability in dryland rivers: boom, bust and the bits in between. River Research and Applications, 22(2), 179–186. doi: 10.1002/rra.904
16 Carr, A. B., Trigg, M. A., Tshimanga, R. M., Borman, D. J., & Smith, M. W. (2019). Greater water surface variability revealed by new congo river field data: Implications for satellite altimetry measurements of large rivers. Geophysical Research Letters, 46(14), 8093–8101. doi: 10.1029/2019GL083720
17 Cenacchi, N. (2014). Drought risk reduction in agriculture: A review of adaptive strategies in East Africa and the Indo‐Gangetic plain of South Asia. International Food Policy Research Institute (IFPRI), discussion Paper 1372. Retrieved from: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128277. 23 September 2017.
18 Chen, Y., Wang, B., Pollino, C. A., Cuddy, S. M., Merrin, L. E., & Huang, C. (2014). Estimate of flood inundation and retention on wetlands using remote sensing and GIS. Ecohydrology, 7(5), 1412–1420. doi: 10.1002/eco.1467
19 Conway, D., Persechino, A., Ardoin‐Bardin, S., Hamandawana, H., Dieulin, C., & Mahé, G. (2009). Rainfall and water resources variability in Sub‐Saharan Africa during the twentieth century. Journal of Hydrometeorology, 10(1), 41–59. doi: 10.1175/2008JHM1004.1
20 Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018
21 Creese, A., Washington, R., & Jones, R. (2019). Climate change in the Congo Basin: processes related to wetting in the December–February dry season. Climate Dynamics, 53, 3583–3602. doi: 10.1007/s00382‐019‐04728‐x
22 Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., & Davis, J. L. (2006). Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19), L19402. doi: 10.1029/2006GL027070
23 Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., et al. (2009). Spatio‐temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. Journal of Hydrology, 375(1–2), 90–102. doi: 10.1016/j.jhydrol.2008.12.012
24 Dyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122(13), 6882–6898. doi: 10.1002/2016JD026240
25 Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 108(D22). doi: 10.1029/2002JD003296
26 Epule, E. T., Peng, C., Lepage, L., & Chen, Z. (2014). The causes, effects and challenges of Sahelian droughts: a critical review. Regional Environmental Change, 14(1), 145–156. doi: 10.1007/s10113‐013‐0473‐z
27 FAO (2016). Climate change and food security: risks and responses. Food and Agricultural Organisation of the United Nations. Retrieved from http://www.fao.org/3/a‐i5188e.pdf. 20 September 2016.
28 Farnsworth, A., White, E., Williams, C. J., Black, E., & Kniveton, D. R. (2011). Understanding the Large Scale Driving Mechanisms of Rainfall Variability over Central Africa. In: Kniveton, D. R., &Williams, C. J. R. (Eds.), African Climate and Climate Change: Physical, Social and Political Perspectives, pp. 101–122. Springer Netherlands: Dordrecht. doi: 10.1007/978‐90‐481‐3842‐5_5.
29 Ferreira, V., Montecino, H., Ndehedehe, C., Heck,