North American Agroforestry. Группа авторов

Читать онлайн.
Название North American Agroforestry
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9780891183839



Скачать книгу

with examples from peninsular India. Agroforestry Systems, 92, 59–69.

      75 Lambers, H., Chapin, F. S., III, & Pons, T. L. (1998). Plant physiological ecology. New York: Springer.

      76 Lee, K. H., Isenhart, T. M., & Schultz, R. C. (2003). Sediment and nutrient removal in an established multi‐species riparian buffer. Journal of Soil and Water Conservation, 58, 1–8.

      77 Lehmkuhler, J. W., Felton, E. E. D., Schmidt, D. A., Bader, K. J., Garrett, H. E., & Kerley, M. S. (2003). Tree protection methods during the silvopastoral‐system establishment in midwestern USA: Cattle performance and tree damage. Agroforestry Systems, 59, 35–42.

      78 Li, F. D., Meng, P., Dali, F., & Wang, B. P. (2008). Light distribution, photosynthetic rate and yield in a Paulownia–wheat intercropping system in China. Agroforestry Systems, 74, 163–172.

      79 Lin, C. H., McGraw, R. L., George, M. F., & Garrett, H. E. (1999). Shade effects on forage crops with potential in temperate agroforestry practices. Agroforestry Systems, 44,109–119.

      80 Lin, C. H., McGraw, R. L., George, M. F., & Garrett, H. E. (2001). Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforestry Systems, 53, 269–281.

      81 Lovell, S. T., Dupraz, C., Gold, M., Jose, S., Revord, R., Stanek, E., & Wolz, K. J. (2017). Temperate agroforestry research: Considering multifunctional woody polycultures and the design of long‐term field trials. Agroforestry Systems, 92, 1397–1415. https://doi.org/10.1007/s10457‐017‐0087‐4

      82 Martin‐Chave, A., Béral, C., & Capowiez, Y. (2019). Agroforestry has an impact on nocturnal predation by ground beetles and Opiliones in a temperate organic alley cropping system. Biological Control, 129, 128–135. https://doi.org/10.1016/j.biocontrol.2018.10.009

      83 Mayer, A. C., Stockli, V., Konold, W., & Kreuzer, M. (2006). Influence of cattle stocking rate on browsing of Norway spruce in subalpine wood pastures. Agroforestry Systems, 66, 143–149. https://doi.org/10.1007/s10457‐005‐5460‐z

      84 Mcadam, J. H., Sibbald, A. R., Teklehaimanot, Z., & Eason, W. R. (2007). Developing silvopastoral systems and their effects on diversity of fauna. Agroforestry Systems, 70, 81–89. https://doi.org/10.1007/s10457‐007‐9047‐8

      85 Miller, A. W., & Pallardy, S. G. (2001). Resource competition across the crop–tree interface in a maize–silver maple temperate alley cropping stand in Missouri. Agroforestry Systems, 53, 247–259.

      86 Miller, T. E., Burns, J. H., Munguia, P., Walters, E. L., Kneitel, J. M., Richards, P. M., . . .Buckley, H. L. (2005). A critical review of 20 years’ use of the resource ratio theory. The American Naturalist, 165, 439–448.

      87 Moreno Marcos, G., Obrador, J. J., García, E., Cubera, E., Montero, M. J., Pulido, F., & Dupraz, C. (2007). Driving competitive and facilitative interactions in oak dehesas through management practices. Agroforestry Systems, 70, 25–40.

      88 Nair, P. K. R. (1993). An introduction to agroforestry. Dordrecht, the Netherlands: Kluwer.

      89 Nair, P. K. R., Buresh, R. J., Mugendi, D. N., & Latt, C. R. (1999). Nutrient cycling in tropical agroforestry systems: Myths and science. In L. E. Buck, J. P. Lassoie, & E. C. M. Fernandes (Eds.), Agroforestry in sustainable agricultural systems (pp. 1–31). Boca Raton, FL: CRC Press.

      90 Nair, V. D., Nair, P. K. R., Kalmbacher, R. S., & Ezenwa, I. V. (2007). Reducing nutrient loss from farms through silvopastoral practices in coarse‐textured soils of Florida, USA. Ecological Engineering, 29, 192–199.

      91 NeSmith, D. S., & Ritchie, J. T. (1992a). Effects of soil water deficits during tassel emergence on development and yield component of maize (Zea mays L.). Field Crops Research, 28, 251–256.

      92 NeSmith, D. S., & Ritchie, J. T. (1992b). Short‐ and long‐term responses of corn to pre‐anthesis soil water deficit. Agronomy Journal, 84,107–113. https://doi.org/10.2134/agronj1992.00021962008400010021x

      93 Ng, H. Y. F., Drury, C. F., Serem, V. K., Tan, C. S., & Gaynor, J. D. (2000). Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clay loam soil. Agricultural Water Management, 43, 111–131.

      94  Nowak, J., Blount, A., & Workman, S. (2002). Integrated timber, forage and livestock production: Benefits of silvopasture (UF/IFAS Circ. 1430). Gainesville, FL: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

      95 Ong, C. K., Black, C. R., Marshall, F. M., & Corlett, J. E. (1996). Principles of resource capture and utilization of light and water. In C. K. Ong & P. Huxley (Eds.), Tree–crop interactions: A physiological approach (pp. 73–158). Wallingford, UK: CAB International.

      96 Ong, C. K., Corlett, J. E., Singh, R. P., & Black, C. R. (1991). Above and belowground interactions in agroforestry systems. Forest Ecology and Management, 45, 45–57.

      97 Ong, C. K., Deans, J. D., Wilson, J., Mutua, J., Khan, A. A. H., & Lawson, E. M. (1999). Exploring belowground complementarity in agroforestry using sap flow and root fractal techniques. Agroforestry Systems, 44, 87–103.

      98 Orefice, J., Caroll, J., Conroy, D., & Ketner, L. (2017). Silvopasture practices and perspectives in the northeastern United States. Agroforestry Systems, 91, 149–160.

      99 Pang, K., Van Sambeek, J. W., Navarrete‐Tindall, N. E., Lin, C.‐H., Jose, S., & Garrett, H. E. (2019a). Responses of legumes and grasses to non‐, moderate, and dense shade in Missouri, USA: I. Forage yield and its species‐level plasticity. Agroforestry Systems, 93, 11–24. https://doi.org/10.1007/s10457‐017‐0067‐8

      100 Pang, K., Van Sambeek, J. W., Navarrete‐Tindall, N. E., Lin, C.‐H., Jose, S., & Garrett, H. E. (2019b). Responses of legumes and grasses to non‐, moderate, and dense shade in Missouri, USA: II. Forage quality and its species‐level plasticity. Agroforestry Systems, 93:25–38. https://doi.org/10.1007/s10457‐017‐0068‐7

      101 Pardon, P., Reheul, D., Mertens, J., Reubens, B., De Frenne, P., De Smedt, P., . . .Verheyen, K. (2019). Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems. Agriculture, Ecosystems & Environment, 270, 114–128.

      102 Passarge, J., Hol, S., Escher, M., & Huisman, J. (2006). Competition for nutrients and light: Stale coexistence, alternative stable states, or competitive exclusion? Ecological Monographs, 76, 57–72. https://doi.org/10.1890/04‐1824

      103 Penuelas, J., & Filella, I. (2003). Deuterium labeling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environmental and Experimental Botany, 49, 201–208. https://doi.org/10.1016/S0098‐8472(02)00070‐9

      104 Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360, 987–992.

      105 Powell, G. W., & Bork, E. W. (2006). Aspen canopy removal and root trenching effects on understory vegetation. Forest Ecology and Management, 230, 79–90.

      106 Quinteros, C. P., Bava, J. O., Bernal, P. M. L., Gobbi, M. E., & Defosse, G. E. (2017). Competition effects of grazing‐modified herbaceous vegetation on growth, survival and water relations of lenga (Nothofagus pumilio) seedlings in a temperate forest of Patagonia, Argentina. Agroforestry Systems, 91, 597–611.

      107 Ramsey,