North American Agroforestry. Группа авторов

Читать онлайн.
Название North American Agroforestry
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9780891183839



Скачать книгу

      The size and machinery complement of each synthetic farm was determined from a survey and analysis of Nebraska farms (Bernhardt, 1994), and a schedule of operations was developed for each farm based on best management practices for east‐central Nebraska. The economic performance of the two systems was then quantified with a model developed by Olson (1998), and erosion and nutrient losses were evaluated with PLANETOR, a farm‐scale environmental and economic model (Center for Farm Financial Management, University of Minnesota). Energy and nutrient budgets for each farm were compiled from published values of the embodied energy of farm inputs (Pimentel, 1980) and crop nutrient and energy contents (Church, 1984; Holland, Welch, et al., 1991). The values of each indicator for the two farms are given in Table 3–4.

      Of course, there is no way to tell from system‐level indicators how much of the improvement in the performance of the agroforestry farm is due to its woody perennial components. The underlying performance data (not shown) indicate that the tree components had a major impact on economic returns. Christmas trees and hazelnuts (Corylus L.) were very profitable, and windbreaks increased crop yields more than enough to compensate for the land taken out of production. Tree crops (with grassed alleys) eliminated water erosion on the land they occupied, although for the whole farm, alfalfa was equally important in reducing water erosion. Windbreaks provided no benefit in reducing wind erosion because soil loss by wind is insignificant on these soils when adequate residue is left each fall.

      A final observation concerns the definition of agroforestry. The windbreaks on this model farm, by interacting with the field crops (biologically and physically), clearly meet the definition of agroforestry. The Christmas trees and hazelnut shrubs, although woody perennials, are planted in blocks and may have only minimal biophysical interaction with other components of the farming system. Does the inclusion of block plantings of trees on a farm necessarily constitute agroforestry? Not by the definition given earlier in this chapter (see Gold & Garrett, 2008), although other definitions of agroforestry would accept such a system on the landscape if it was developed in a temporal sense (Gordon, Newman, Coleman, & Thevathasan, 2018).

      Without question, when the distribution of labor is considered (data not shown) on these two farms, there are advantages to having incorporated woody perennials into the farm system. The conventional farmer is very busy in the spring and early fall, with much less to do in‐between. On the agroforestry farm, the hazelnuts require a great deal of labor for harvest in late July and early August, and Christmas tree sales provide work in late November and December. The inclusion of block plantings of tree crops represents both an economic and a social interaction with other components of the farm but not necessarily one of a biophysical nature. Agroforestry, in North America, is currently defined in terms of five individual practices, with a sixth one added recently (see Chapter 2); however, as it continues to evolve, a broader definition at farm and landscape scales may become appropriate.

      Ecological goods and services are defined as logical benefits resulting from the “normal” functioning of an ecosystem. Maximum production of such goods and services is associated with unstressed agroecosystems, which within the context of agroforestry would constitute a variety of temporal and spatial configurations of trees on the farming landscape. Humans benefit from the maintenance of these goods (e.g., fresh water) within the ecosystem, and the “flow” of these services (e.g., greenhouse gas mitigation) to other systems.

      Agroforestry systems, regardless of type, are capable of providing numerous ecological goods and services, of a range of complexities, over long periods of time (Hunt, 2005; Jose, 2009; Nair, Gordon, & Mosquera‐Losada, 2008). Indeed, agroforestry systems can be designed and engineered to provide specific quantities of particular goods and services. Nonetheless, the universal application of ecological principles to agroforestry system design and management is nearly impossible as a result of the many varied types of systems in existence—from riparian management systems that link terrestrial and aquatic systems to more traditional systems that integrate perennial plants with annual crops, with or without animals. The broad geographical range across which agroforestry systems may be successfully implemented and the scale at which interactions occur—from landscape to individual plant—also complicates the development of a universal understanding of nutrient and energy flows and the relationship of these to system productivity.

      Although systems will differ in the nature and types of environmental services provided, some generalizations can be stated. Most agroforestry systems will tend to improve soils, including productivity, largely through the incorporation of organic matter and C into upper soil profiles from the production of annual litterfall from the tree component. As a result of the presence of perennial root systems, soil erosion relative to monocropped agroecosystems is often minimized.

      Agroforestry systems are being promoted as a means of mitigating climate change as a result of their C sequestration potentials. In all systems, the storage of C is enhanced (Jose, 2009, 2019; Nair et al., 2008; Thevathasan & Gordon, 2004), not only through the perennial nature of the trees, but also through increased soil C storage. The C sequestration potential for agroforestry systems is dependent on the type of agroforestry system, in addition to species composition and age, geographic location, environmental factors, as well as system management practices (Jose, 2009). A 2006 study examining the C sequestration potentials in a 13‐yr‐old temperate tree‐based intercropping system found that the carbon sequestration potential of systems incorporating barley (Hordeum vulgare L. ‘OAC Kippen’) and hybrid poplar (Populus deltoids × Populus nigra clone DN‐177) were four times greater than in a barley and Norway spruce (Picea abies L.) system and five times greater than the examined sole‐cropped barley system, with net C fluxes of 13.2, 1.1, and −2.9 Mg C ha−1 annually (Peichl, Thevathasan, Gordon, Huss, & Abohassan, 2006). Wotherspoon, Thevathasan, Gordon, and Voroney (2014), utilizing the same research site, also quantified the C sequestration