Название | Food Chemistry |
---|---|
Автор произведения | Группа авторов |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 0 |
isbn | 9781119792116 |
12. Hellström, D. and Saghir, M., Packaging and logistics interactions in retail supply chains. Packag. Technol. Sci.: An International Journal, 20, 3, 197–216, 2007.
13. Sohrabpour, V., Oghazi, P., Olsson, A., An improved supplier driven packaging design and development method for supply chain efficiency. Packag. Technol. Sci., 29, 3, 161–173, 2016.
14. Chauhan, O.P., Lakshmi, S., Pandey, A.K., Ravi, N., Gopalan, N., Sharma, R.K., Non-destructive quality monitoring of fresh fruits and vegetables. Def. Life Sci. J., 20, 2, 103, 2017.
15. Sarig, Y., Potential applications of artificial olfactory sensing for quality evaluation of fresh produce. J. Agric. Eng. Res., 77, 3, 239–258, 2000.
16. Aboonajmi, M. and Faridi, H., Nondestructive quality assessment of Agrofood products, in: Proceedings of the 3rd Iranian international NDT conference, 2016.
17. Abasi, S., Minaei, S., Jamshidi, B., Fathi, D., Dedicated non-destructive devices for food quality measurement: A review. Trends Food Sci. Technol., 78, 197–205, 2018.
18. Kawakami, M., Sarma, S., Himizu, K. et al., Aroma characteristics of Darjeeling tea, in: Proceedings of International Conference O-CHA (Tea) Culture Science, Shizuoka, Japan, pp. 110–116, 2004.
19. Bhattacharyya, N., Seth, S., Tudu, B. et al., Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuators B Chem., 122, 627–634, 2007.
20. Lou, X., Ye, Y., Wang, Y., Sun, Y., Pan, D., Cao, J., Effect of high-pressure treatment on taste and metabolite profiles of ducks with two different vinassecuring processes. Food Res. Int., 105, 703–712, 2018.
21. Marcone, M.F., Wang, S., Albabish, W., Nie, S., Somnarain, D., Hill, A., Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int., 51, 2, 729–747, 2013.
22. Williamson, K. and Hatzakis, E., NMR spectroscopy as a robust tool for the rapid evaluation of the lipid profile of fish oil supplements. JoVE (J. Visualized Exp.), 123, 123, e55547, 2017.
23. Hussain, A., Pu, H., Sun, D.W., Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications. Trends Food Sci. Technol., 72, 144–152, 2018.
24. Ezeanaka, M.C., Nsor-Atindana, J., Zhang, M., Online Low-field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in Food Processing. Food Bioprocess Tech., 12, 9, 1435–1451, 2019.
25. Caporaso, N., Whitworth, M.B., Fisk, I.D., Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev., 53, 8, 667–687, 2018.
26. Dachoupakan Sirisomboon, C., Putthang, R., Sirisomboon, P., Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control, 33, 1, 207–214, 2013.
27. Bindhu, M.R. and Umadevi, M., Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett., 120, 122–125, 2014.
28. Ethiraj, A.S., Jayanthi, S., Ramalingam, C., Banerjee, C., Control of size and antimicrobial activity of green synthesized silver nanoparticles. Mater. Lett., 185, 526–529, 2016.
29. Gopinath, K., Shanmugam, V.K., Gowri, S., Senthilkumar, V., Kumaresan., S., Arumugam, A., Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J. Nanostruct. Chem., 4, 83, 2014.
30. Kujur, A., Kiran, S., Dubey, N.K., Prakash, B., Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: improvement of antimicrobial activity, stability and mode of action. LWT-Food Sci. Technol., 86, 132–138, 2017.
31. Martins, F.C., Sentanin, M.A., De Souza, D., Analytical methods in food additives determination: compounds with functional applications. Food Chem., 272, 732–750, 2019.
32. Maryam, I., Huzaifa, U., Hindatu, H., Zubaida, S., Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial Resistance. Int. J. Pharmacogn. Phytochem., 4, 3, 165, 2015.
33. Prakash, B., Kujur, A., Yadav, A., Kumar, A., Singh, P.P., Dubey, N.K., Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 89, 1–11, 2018.
34. Sun, B. and Wang, J., Food additives, in: Food Safety in China: Science, Technology, Management and Regulation, pp. 186–200, 2017.
35. Lei, T. and Sun, D.W., Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends Food Sci. Technol., 88, 527–542, 2019.
36. Alamprese, C., Casale, M., Sinelli, N., Lanteri, S., Casiraghi, E., Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol., 53, 1, 225–232, 2013.
37. Salguero-Chaparro, L., Gaitán-Jurado, A.J., Ortiz-Somovilla, V., Peña-Rodríguez, F., Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives. Food Control, 30, 2, 504–509, 2013.
38. Xue, L., Cai, J., Li, J., Liu, M., Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel range with Vis-NIR spectroscopy. Proc. Eng., 29, 4124–4128, 2012.
39. Luna, A.S., da Silva, A.P., Pinho, J.S., Ferre, J., Boque, R., Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochim. Acta A, 100, 115–119, 2013.
40. Sarkar, M., Gupta, N., Assaad, M., Nondestructive Food Quality Monitoring Using Phase Information in Time-Resolved Reflectance Spectroscopy. IEEE Trans. Instrum. Meas., 69, 10, 7787–7795, 2020.
41. Ebrahimi-Najafabadi, H., Leardi, R., Oliveri, P., Chiara Casolino, M., JalaliHeravi, M., Lanteri, S., Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta, 99, 175–179, 2012.
42. Leiva-Valenzuela, G.A., Lu, R., Aguilera, J.M., Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J. Food Eng., 115, 1, 91–98, 2013.
43. Suktanarak, S. and Teerachaichayut, S., Non-destructive quality assessment of hens’ eggs using hyperspectral images. J. Food Eng., 215, 97–103, 2017.
44. Sanchez, P.D.C., Hashim, N., Shamsudin, R., Nor, M.Z.M., Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends Food Sci. Technol., 96, 208–221, 2020.
45. Vanoli, M., Rizzolo, A., Grassi, M., Spinelli, L., Verlinden, B.E., Torricelli, A., Studies on classification models to discriminate “Braeburn” apples affected by internal browning using the optical properties measured by time-resolved reflectance spectroscopy. Postharvest Biol. Technol., 91, 112–121, 2014.
46. Vanoli, M., Grassi, M., Spinelli, L., Torricelli, A., Rizzolo, A., Quality and nutraceutical properties of mango fruit: influence of cultivar and biological age assessed by Time-resolved Reflectance Spectroscopy. Adv. Hortic. Sci., 32, 3, 407–420, 2018.
47. Ibrahim, A., Grassi, M., Lovati, F., Parisi, B., Spinelli, L., Torricelli, A., Vanoli, M., Non-destructive detection of potato tubers internal defects: critical insight on the use of time-resolved spectroscopy. Adv. Hortic. Sci., 34, 1S, 43–51, 2020.
48. Djenane, D. and Roncalés, P., Carbon monoxide in meat and fish packaging: advantages and limits. Foods, 7, 2, 12, 2018.
49. Gaikwad, P.S., Yadav, B.K., Sugumar, A., Fabrication of natural colorimetric indicators for monitoring freshness of ready-to-cook