Название | Magnetic Nanoparticles in Human Health and Medicine |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119754749 |
45 Dillon, J.F. (1962). Magnetic properties I. In: Landolt‐Börnstein, Vol. II(9): 50–51. Berlin: Springer‐Verlag.
46 Enpuku, K., Hotta, M., Nakahodo, A., and Physica, C. (2001). High‐Tc SQUID system for biological immunoassays. Physica C: Superconductivity 357–360: 1462–1465.
47 Ferguson, R.M., Minard, K.R., Khandhar, A.P., and Krishnan, K.M. (2011). Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Medical Physics 38: 1619.
48 Fortin‐Ripoche, J.P., Martina, M.S., Gazeau, F. et al. (2006). Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239 (2): 1–20.
49 Gao, Y., Liu, Y., Xu, C., and Cai, W. (2014). Magnetic Nanoparticles for Biomedical Applications: From Diagnosis to Treatment to Regeneration. London: Springer‐Verlag.
50 Garcia, J. and Subias, G.J. (2004). The Verwey transition – a new perspective. Journal of Physics: Condensed Matter 16: R145–R178.
51 Goya, G., Berquo, T., Fonseca, F., and Morales, M. (2003). Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics 94: 3520.
52 Grimm, J., Perez, J.M., Josephson, L., and Weissleder, R. (2004). Novel nanosensors for rapid analysis of telomerase activity. Cancer. Res. 64: 639–643.
53 Guardia, P., Batlle‐Brugal, B., Roca, A. et al. (2007). Surfactant effects in magnetite nanoparticles of controlled size. Journal of Magnetism and Magnetic Materials 316: e756.
54 Guo, T., Lin, M., Huang, J. et al. (2018). The recent advances of magnetic nanoparticles in medicine. Journal of Nanomaterials 7805147: 1–8.
55 Hassen, W.M., Chaix, C., Abdelghani, A. et al. (2008). An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors and Actuators B: Chemical 134: 755–760.
56 Hendriksen, P.V., Linderoth, S., and Lindgard, P.A. (1992). Finite‐size effects in the magnetic properties of ferromagnetic clusters. Journal of Magnetism and Magnetic Materials 104–107: 1577–1579.
57 Hendriksen, P.V., Linderoth, S., and Lindgard, P.A. (1993). Finite‐size modifications of the magnetic properties of clusters. Physical Review B 48: 7259.
58 Herpin, A. (1968). Theorie du Magnetism. Paris: Universitaires de France.
59 Hilty, F.M., Arnold, M., Hilbe, M. et al. (2010). Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnology 5 (5): 374–380.
60 Jacobs, I.S. and Bean, C.P. (1963). Fine particles; superparamagnetism. In: Magnetism III (eds. G.T. Rado and H. Suhl). New York: Academic Press.
61 Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews 46: 149–168.
62 Jangpatarapongsa, K., Polpanich, D., Yamkamon, V. et al. (2011). DNA detection of chronic myelogenous leukemia by magnetic nanoparticles. Analyst 136 (2): 354–358.
63 Kaittanis, C., Santra, S., and Perez, J.M. (2009). Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Amer. Chem. Soc. 131 (35): 12780–12791. doi: 10.1021/ja9041077.
64 Kim, C., Lee, Y., Kim, J.S. et al. (2010). Thermally triggered cellular uptakeof quantum dots immobilized with poly(N‐isopropylacrylamide) and cell penetrating peptide. Langmuir: The ACS Journal of Surfaces and Colloids 26 (18): 14965–14969.
65 Kim, S., Lewis, B., Steiner, M. et al. (2016). Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media & Molecular Imaging 11 (1): 55–64.
66 Kittel, C. (1946). Theory of the structure of ferromagnetic domains in films and small particles. Physics Review 70: 965.
67 Kneller, E. (1962). Ferromagnetismus. Berlin: Springer.
68 Kodama, R.H. (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 200: 359–372.
69 Kodama, R.H., Berkowitz, A.E., McNiff, E.J., and Foner, S. (1996). Surface spin disorder in NiFe2O4 nanoparticles. Physical Review Letters 77: 394.
70 Kojima, H. (1982). Fundamental properties of hexagonal ferrites with magnetoplumbite structure. In: Handbook of Ferromagnetic Materials (ed. E.P. Wohlfarth). North‐Holland, Amsterdam: Elsevier.
71 Langevin, P. (1905). Magnétisme et thérie des electrons. Annales de chimie et de physique 5: 70–127.
72 Laurent, S., Forge, D., Port, M. et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6): 2064–2110.
73 Li, J., Yang, J., Wei, P. et al. (2015). Hyaluronic acid‐midified Fe3O4 @Au core/shell nanostar for multifunctional imaging and photothermal therapy of tumors. Biomaterials 38: 10–21.
74 Linderoth, S., Balcells, L., Labarta, A. et al. (1993). Magnetization and Mössbauer studies of ultrafine Fe‐C particles. Journal of Magnetism and Magnetic Materials 124: 269–276.
75 Liu, Y. and Zhang, N. (2012). Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 33: 5363–5375.
76 Ma, C., Wang, W., Yang, Q. et al. (2011). Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosensors & Bioelectronics 26 (7): 3309–3312.
77 Martina, M.S., Fortin, J.P., Ménager, C. et al. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society 127: 10676–10685.
78 McBain, S.C., Yiu, H.H., and Dobson, J. (2008). Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 3: 169–180.
79 Mody, V.V., Singh, A., and Wesley, B. (2013). Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine 5 (1): 11–21.
80 Mok, H. and Zhang, M. (2013). Superparamagnetic iron oxide nanoparticle‐based delivery systems for biotherapeutics. Expert Opinion on Drug Delivery 10 (1): 73–87.
81 Morais, P.C., Teixeira, C.B., Neto, K.S. et al. (2000). Magnetic behavior of zero‐field‐frozen ferrofluid. Solid State Communications 114: 59–62.
82 Néel, L. (1949). Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Annales de Geophysique 5: 99.
83 Néel, L. (1954). Anisotropie superficielle et surstructures d'orientation magnétique. Journal De Physique Et Le Radium 15: 225.
84 Niemirowicz, K., Markiewicz, K.H., Wilczewska, A.Z. and Car, H. (2012). Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 57( 2): 196–207. doi: 10.2478/v10039-012-0031-9. PMID: 23154427.
85 Niemirowicz, K., Prokop, I., Wilczewska, A. et al. (2015). Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL‐37 peptide against colon cancer cells. International Journal of Nanomedicine 10: 3843–3853.
86 Nogues, J., Sort, J., Langlais, V. et al. (2005). Exchange bias in nanostructures. Physics Reports 422: 65–117.
87 O’Grady, K. and Bradbury, A. (1994). Particle size analysis in ferrofluids. Journal of Magnetism and Magnetic Materials 39: 91–94.
88 Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J. (2003). Applications of magnetic nano‐particles in biomedicine. Journal of Physics D: Applied Physics 36 (13): R167–R181.
89 Park, J., An, K., Hwang, Y. et al. (2004). Ultra‐large‐scale syntheses of monodisperse nanocrystals. Nature Materials 3: 891.
90 Parkinson, G.S., Diebold, U., Jinke Tang, J., and Leszek Malkinski,