Название | Magnetic Nanoparticles in Human Health and Medicine |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119754749 |
In the alternating magnetic field (harmonic), magnetic relaxation processes lead to a heating of nanoparticles, an effect with applications in biomedicine such as in the alternative therapy of tumors by magnetic hyperthermia. Also, the rapid response of nanoparticles to the application of an external magnetic field makes them easy to manipulate, with application in target medication and drug delivery. In addition, in biomedicine, the magnetic nanoparticles are also used as contrast agents in magnetic resonance imaging (MRI) based on two essential characteristics of nanoparticles: their magnetism and small size.
References
1 Abbas, M., Rao, B.P., Naga, S. et al. (2013). Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction‐surfactantless polyol process. Ceramics International 39: 7605.
2 Ahmed, N., Fessi, H., and Elaissari, A. (2012). Theranostic applications of nanoparticles in cancer. Drug Discovery Today 17: 928–934.
3 Aldred, A.T. (1975). Temperature dependence of the magnetization of nickel. Physical Review B 11: 2597.
4 Aldred, A.T. and Frohle, P.H. (1972). Temperature and field dependence of iron. International Journal of Magnetism and Magnetic Materials 2: 195.
5 Anbarasu, M., Anandan, M., Chinnasamy, E. et al. (2015). Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co‐precipitation method for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (25): 536–539.
6 Arruebo, M., Fernandez‐Pacheco, R., Ibarra, M.R., and Santamaria, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2 (3): 22–32.
7 Atanasijevic, T., Shusteff, M., Fam, P., and Jasanoff, A. (2006). Calcium‐sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proceedings of the National Academy of Sciences of the United States of America 103: 14707–14712.
8 Baberschke, K. (2001). Anisotropy in magnetism. In: Band‐Ferromagnetism, Lecture Notes in Physics, vol. 580 (eds. K. Baberschke, W. Nolting and M. Donath). Berlin, Heidelberg: Springer.
9 Back, C.H., Weller, D., Heidmann, J. et al. (1998). Magnetization reversal in ultrashort magnetic field pulses. Physical Review Letters 81: 3251.
10 Bacri, J.C., Perzinski, R., Salin, D. et al. (1986). Magnetic colloidal properties of ionic ferrofluids. Journal of Magnetism and Magnetic Materials 62: 36–46.
11 Baker, I., Zeng, Q., Li, W., and Sullivan, C.R. (2006). Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. Journal of Applied Physics 99: 08H106–08H106‐3.
12 Bao, G., Mitragotri, S., and Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering 15: 253–282.
13 Bean, C.P. and Livingston, L.D. (1959). Superparamagnetism. Journal of Applied Physics 30: S120–S129.
14 Berkowitz, A.E. and Kodama, R.H. (2006). Exchange anisotropy. In: Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, Contemporary Concepts of Condensed Matter Science, vol. 1 (eds. D.L. Mills and J.A.C. Bland), 115–152. Elesevier Science.
15 Berkowitz, A.E., Lahut, J.A., Iacobs, I.S. et al. (1975). Spin pinning at ferrite‐organic interfaces. Physical Review Letters 34: 594.
16 Berkowitz, A.E., Lahut, J.A., and VanBuren, C.E. (1980). Properties of magnetic fluid particles. IEEE Transactions on Magnetics 16: 184.
17 Bloch, F. (1930). Zur Theorie des ferromagnetismus. Zeitschrift für Physik 61: 206.
18 Broese Van Groenou, A., Schulkes, J.A., and Annis, D.A. (1967). Magnetic anisotropy of some nickel zinc ferrite crystals. Journal of Applied Physics 38: 1133.
19 Brown, W.F. (1963). Thermal fluctuations of a single‐domain particle. Physical Review 130: 1677–1686.
20 Bulte, J.W.M. and Kraitchman, D.L. (2004). Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine 17 (7): 484–499.
21 Bulte, J.W.M., Duncan, I.D., and Frank, J.A. (2002). In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. Journal of Cerebral Blood Flow and Metabolism 22 (8): 899–907.
22 Caizer, C. (2002). Magnetic behavior of Mn0.6Fe0.4Fe2O4 nanopartciles in ferrofluid at low temperatures. Journal of Magnetism and Magnetic Materials 251: 304.
23 Caizer, C. (2003a). Structural and magnetic properties of nanocrystalline ZnO.65NiO.35FeO4 powder obtained from heteropolynuclear complex combination. Materials Science and Engineering B 100: 63.
24 Caizer, C. (2003b). T2 law for magnetite‐based ferrofluids. Journal of Physics: Condensed Matter 15: 765.
25 Caizer, C. (2004a). Magnetic Nanofluids (in Romanian). Timisoara: Eurobit Publishing.
26 Caizer, C. (2004b). Magnetic Nanoparticles Systems (in Romanian). Timisoara: Ed UVT.
27 Caizer, C. (2005a). Deviations from Bloch law in the case of surfacted nanoparticles. Applied Physics A: Materials Science & Processing 80: 1745.
28 Caizer, C. (2005b). The effect of the external magnetic field on the thermal relaxation of magnetization in systems of aligned nanoparticles. Journal of Physics: Condensed Mater 17 (12).
29 Caizer, C. (2008). Magnetic properties of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85 at room temperature. Journal of Magnetism and Magnetic Materials 320: 1056–1062.
30 Caizer, C. (2010). Nanobiomagnetism (in Romanian). Timisoara: Ed UVT.
31 Caizer, C. (2013). Bioelectromagnetism (in Romanian). Timisoara: Eurobit Publishing House.
32 Caizer, C. (2016). Nanoparticle size effect on some magnetic properties. In: Handbook of Nanoparticles (ed. M. Aliofkhazraei). Switzerland: Springer International Publishing.
33 Caizer (2017). Magnetic hyperthermia using magnetic metal/oxide nanoparticles with potential in cancer therapy. In: Metal Nanoparticles in Pharma (eds. M. Rai and R. Shegokar). Springer.
34 Caizer, C. (2019). Magnetic anisotropy of nanocomposites made of magnetic nanoparticles dispersed in solid matrices. In: Advances in Nanostructured Composites (ed. M. Aliofkhazraei). CRC Press – Taylor & Francis Group.
35 Caizer, C. and Stefanescu, M. (2002). Magnetic characterization of nanocrystalline Ni‐Zn ferrite powder prepared by the glyoxylate precursor method. Journal of Physics D 35: 3035.
36 Caizer, C. and Stefanescu, M. (2003). Nanocrystallite size effect on σs and Hc in nanoparticle assemblies. Physica B: Condensed Mater 327: 129–134.
37 Caizer, C. and Tura, V. (2006). Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles. Journal of Magnetism and Magnetic Materials 301: 513–520.
38 Caizer, C., Popovici, M., and Savii, C. (2003). Spherical(ZnδNi1‐δFe2O4)γ nanoparticles in an amorphous (SiO2)1‐γ matrix, prepared with the sol–gel method. Acta Materiala 51: 3607–3616.
39 Caizer, C., Buteica, A.S., and Mindrila, I. (2017). Biocompatible magnetic oxide nanoparticles with metal ions coated with organic shell as potential therapeutic agents in cancer. In: Metal Nanoparticles in Pharma (eds. M. Rai and R. Shegokar). Springer International Publishing.
40 Caizer, C., Dehelean, C., Coricovac, D.E. et al. (2020). Magnetic nanoparticles nanoformulations for alternative therapy of cancer by magnetic/superparamagnetic hyperthermia. In: Nanoformulations in Human Health (eds. S. Talegaonkar and M. Rai). Cham: Springer.
41 Chomoucka, J., Drbohlavova, J., Huska, D. et al. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research 62 (2): 144–149.
42 Coey, J.M.D. and Khalafalla, D. (1972). Superparamagnetic γ‐Fe2O3. Physica Status Solidi 11: 229–241.
43