Название | Люди и я |
---|---|
Автор произведения | Мэтт Хейг |
Жанр | Современная зарубежная литература |
Серия | |
Издательство | Современная зарубежная литература |
Год выпуска | 2013 |
isbn | 978-5-905891-57-1, 978-5-905891-35-9 |
Подобно эволюции живых существ путь математики состоял из головокружительных взлетов и падений. Если бы Александрийскую библиотеку не сожгли дотла, вполне возможно, что мы полнее и быстрее развили бы достижения древних греков и уже во времена Кардано, Ньютона или Паскаля впервые отправили человека на Луну. Кто знает, чего бы мы достигли. И какие планеты терраформировали и колонизировали бы к началу двадцать первого века. Каких высот достигла бы медицина. Не будь в нашей истории темных веков, этого блэкаута, мы, возможно, уже нашли бы способ не стареть и не умирать.
В наших кругах принято подшучивать над Пифагором и его мистическим учением, основанным на идеальной геометрии и других математических абстракциях. Но если вообще говорить о религии, то религия математики выглядит идеальной, ибо если Бог существует, то кто он, если не математик?
Сегодня, пожалуй, мы можем сказать, что поднялись чуть ближе к нашему божеству. В самом деле, у нас появился теоретический шанс повернуть время вспять, возродить ту древнюю библиотеку и встать на плечи великанов, которых не было.
Простые числа
Текст был до конца выдержан в том же восторженном духе. Я чуть больше узнал о Бернхарде Римане, болезненно застенчивом немецком вундеркинде, жившем в девятнадцатом веке. Мальчик в раннем возрасте проявил неординарные математические способности, потом была блестящая научная карьера и череда нервных срывов, омрачивших его зрелые годы. Позже я узнал, что это одна из ключевых проблем, преграждающих людям путь к числовому пониманию, – у них просто не выдерживает нервная система.
Простые числа сводят людей с ума в буквальном смысле слова, тем более что данная область полна загадок. Человек знает, что простое число есть целое число, которое делится только на единицу и на само себя, а дальше начинаются всевозможные проблемы.
Например, людям известно, что простых чисел столько же, сколько чисел вообще, ведь количество и тех и других бесконечно. Но этот факт не укладывается в человеческой голове, ведь понятно же, что всех чисел вместе должно быть больше, чем только одних простых. Так что некоторые люди после безуспешных попыток осмысления данного парадокса совали в рот пистолет, нажимали на спуск и вышибали себе мозг.
Люди также поняли кое-что насчет распределения простых чисел. Тут как с воздухом на Земле: чем выше поднимаешься, тем их меньше. К примеру, в промежутке от 0 до 100 помещается 25 простых чисел, от 100 до 200 уже только 21 простое число, а от 1000 до 1100 всего 16. Однако в отличие от земного воздуха, как бы высоко мы ни взобрались по числовой оси, поблизости все равно окажутся простые числа. Например, 2097593 – простое число, и между ним и, скажем, 431439883273989572793241 9750374600193 их найдутся еще миллионы.
Тем не менее человек искал закономерность в на первый взгляд произвольном порядке распределения простых чисел. Ясно, что их частота уменьшается, но почему? Человечество билось над