Modern Trends in Structural and Solid Mechanics 2. Группа авторов

Читать онлайн.
Название Modern Trends in Structural and Solid Mechanics 2
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119831846



Скачать книгу

      Bolotin, V.V. (1961b). An asymptotic method for the study of the problem of eigenvalues of rectangular regions. Problems of Continuum Mechanics, SIAM, 56–68.

      Bolotin, V.V. (1961c). Asymptotic method in the theory of oscillations of elastic plates and shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 21–26.

      Bolotin, V.V. (1961d). The natural oscillations of a rectangular elastic parallelepiped. J. Appl. Math. Mech., 25(1), 220–227.

      Bolotin, V.V. (1963). On the density of the distribution of natural frequencies of thin elastic shells. J. Appl. Math. Mech., 27(2), 538–543.

      Bolotin, V.V. (1966). Broadband random vibrations of elastic systems. Int. J. Solids Struct., 2(1), 105–124.

      Bolotin, V.V. (1970). Application of edge effect theory to forced vibration analysis of elastic systems. Trudy Moscow Energet. Inst. Dyn. Soprot. Mater., 74, 180–192.

      Bolotin, V.V. (1984). Random Vibrations of Elastic Systems. Springer, Dordrecht.

      Bolotin, V.V. (2006). 80th birthday tribute. J. Appl. Math. Mech., 70(2), 161–175.

      Bolotin, V.V., Marein N.S., Vinokurov A.I., Poznyak E.L., Ivovich V.A. (1958). Vibration and vibrational strength of overhead power lines. Nauch. Dokl. Vish. Shkoly. Energetika, 2, 55–62.

      Bolotin, V.V., Makarov, V.P., Mishenkov, G.V., Shveiko, Yu.Yu. (1960). Asymptotic method of investigating the eigenfrequency spectrum of elastic plates. Rasch. Prochn., 6, 231–253.

      Bolotin, V.V., Gol’denblat, I.I., Smirnov, A.F. (1961). Modern Problems of Structural Mechanics. Stroyizdat, Moscow.

      Chen, G. and Zhou, J. (1993). Vibration and Damping in Distributed Systems Vol. II: WKB and Wave Methods, Visualization and Experimentation. CRC Press, Boca Raton.

      Chen, G., Coleman, M.P., Zhou, J. (1991). Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubinow wave method I: Clamped boundary conditions with rectangular or circular geometry. SIAM J. Appl. Math., 51(4), 967–983.

      Chen, G., Coleman, M.P., Zhou, J. (1992). The equivalence between the wave propagation method and Bolotin’s method in the asymptotic estimation of eigenfrequencies of a rectangular plate. Wave Motion, 16(3), 285–297.

      Crighton, D.G. (1994). Asymptotics – An indispensable complement to thought, computation and experiment in applied mathematical modelling. In Seventh Europ. Conf. Math. Ind., Fasano, A., Primicerio, M.B., Teubner, G. (eds). B.G. Teubner, Stuttgart.

      Dickinson, S.M. (1975a). Bolotin’s method applied to the buckling and lateral vibration of stressed plates. AIAA J., 13(1), 109–110.

      Dickinson, S.M. (1975b). Modified Bolotin’s method applied to buckling and vibration of stressed plates. AIAA J., 13(12), 1672–1673.

      Dickinson, S.M. and Warburton, G.B. (1967). Natural frequencies of plate systems using the edge effect method. J. Mech. Eng. Sci., 9(4), 318–324.

      Dubovskikh, Y.A., Khromatov, V.E., Chirkov, V.E. (1996). Asymptotic analysis of stability and postcritical behavior of elastic panels in a supersonic flow. Mech. Solids, 31(3), 65–75.

      Elishakoff, I. (1974). Vibration analysis of clamped square orthotropic plate. AIAA J., 12, 921–924.

      Elishakoff, I. (1976). Bolotin’s dynamic edge-effect method. Shock Vibr. Digest, 8(1), 95–104.

      Elishakoff, I. and Steinberg, A. (1979). Eigenfrequencies of continuous plates with arbitrary number of equal spans. J. Appl. Mech., 46, 656–662.

      Elishakoff, I. and Wiener, F. (1976). Vibration of an open shallow cylindrical shell. J. Sound Vibr., 44, 379–392.

      Elishakoff, I., Steinberg, A., van Baten, T. (1993). Vibration of multispan stiffened plates via modified dynamic edge effect method. Comp. Meth. Appl. Mech. Eng., 105, 211–223.

      Elishakoff, I., Lin, Y.K., Zhu, L.P. (1994). Probabilistic and Convex Modelling of Acoustically Excited Structures. Elsevier, Amsterdam.

      Emmerling, F.A. (1979). Ermittlung von Eigenkreisfrequenzen schwingender Rechteckplatten mit Hilfe der asymptotishen Methode von Bolotin. Stahlbau, 49(11), 327–334.

      Gavrilov, Y.V. (1961a). Determination of natural vibration frequencies of elastic circular cylindrical shells. Izv. AN SSSR OTN Mech. Mashin., 1, 161–163.

      Gavrilov, Y.V. (1961b). Investigation of the spectrum of natural oscillations of elastic cylindrical shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 72–76.

      Gibigaye, M., Yabi, C.P., Alloba, I.E. (2016). Dynamic response of a rigid pavement plate based on an inertial soil. Int. Schol. Res. Not., 1–9.

      Golubeva, T.N., Korobkov, Y.S., Khromatov, V.E. (2013). The influence of a longitudinal magnetic field on the frequency spectra of oscillations of ferromagnetic plates. Electrotechnika, 3, 44–48.

      Gontkevich, V.S. (1964). Natural Oscillations of Plates and Shells. Naukova Dumka, Kiev.

      Kauderer, H. (1958). Nichtlineare Mechanik. Springer, Berlin, Göttingen, Heidelberg.

      Kaza, V. and Ramaiah, G.K. (1978). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib., 59(3), 335–347.

      Keller, J.B. and Rubinow, S.I. (1960). Asymptotic solution of eigenvalue problems. Ann. Phys., 9(1), 24–75. Errata, Ann. Phys., 9(2).

      Khromatov, V.E. (1972a). Properties of spectra of thin circular cylindrical shells oscillating near momentless stress state. Mech. Solids, 7(2), 103–108.

      Khromatov, V.E. (1972b). Density of frequencies of natural oscillations of thin spherical shells in momentless stress state. Trudy Moscow Energet. Inst., 101, 148–153.

      Khromatov, V.E. and Golubeva, T.N. (2013). Oscillations and stability of a ferromagnetic cylindrical shell in a magnetic field. Vestnik Moscow Avia. Inst., 20(3), 212–219.

      King, W.W. and Lin, C.-C. (1974). Application of Bolotin’s method to vibrations of plates. AIAA J., 12(3), 399–401.

      Kline, S.J. (1965). Similitude and Approximation Theory. McGraw-Hill, New York.

      Koreshkova, N.S. and Khromatov, V.E. (2009). On the influence of a transverse magnetic field on the vibration spectra of shallow shells. Mech. Solids, 44, 632–638.

      Krizhevskii, G.A. (1988). Combination of Rayleigh and dynamic edge effect methods in studying vibrations of rectangular plates. J. Appl. Mech. Techn. Phys., 29(6), 919–921.

      Krizhevskii, G.A. (1989). Vibration and stability of orthotropic rectangular plates. Sov. Appl. Mech., 25(8), 822–825.

      Kudryavtsev, E.P. (1960). Influence of shear deformation and rotary inertia on flexural vibration of an elastic beam. Izv. AN SSSR OTN Mech. Mashin., 5, 156–159.

      Kudryavtsev, E.P. (1964). Application of asymptotic method for investigating the eigenfrequencies of elastic rectangular plates. Rasch. Prochn., 10, 352–362.

      Lin, C.C. and King, W.W. (1974). Free transverse vibrations of rectangular unsymmetrically laminated plates. J. Sound Vib., 36(1), 91–103.

      Maslov, V.P. and Fedoryuk, M.V. (1981). Semi-classical Approximation in Quantum Mechanics. Kluwer, Dordrecht.

      Meilani,