Название | Mathématiques et Mathématiciens: Pensées et Curiosités |
---|---|
Автор произведения | Alphonse Rebière |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4064066080549 |
...........................
Des hommes de génie, Desargues en tête, réussirent enfin à rattacher aux règles de la géométrie élémentaire la plupart des méthodes, des tracés en usage dans la coupe des pierres et dans la charpente. Malheureusement leurs démonstrations étaient longues, embarrassées; elles devaient toujours rester hors de la portée des simples ouvriers.
À quoi tenaient ces complications? Elles tenaient à ce qu'on était obligé de créer la science tout entière, à l'occasion de chaque problème. Adoptez cette méthode dans telle autre branche quelconque des mathématiques, et la plus inextricable confusion en sera aussi la conséquence inévitable.
...........................
Monge débrouilla ce chaos. Il fit voir que les solutions graphiques de tous les problèmes de la géométrie à trois dimensions se fondaient sur un très petit nombre de principes qu'il exposa avec une merveilleuse clarté. Désormais aucune question, parmi les plus complexes, ne devait être l'apanage exclusif des esprits d'élite; avec des instruments bien définis et une méthode de recherche uniforme, la géométrie descriptive, dont Monge devint le créateur, pénétra jusque dans les rangs nombreux de la classe ouvrière.
Arago.
Une branche considérable de la géométrie, qui se recommande par des applications nombreuses, et que cultivaient par instinct plutôt que méthodiquement tous les ouvriers employés aux arts de construction, a été réduite en corps de doctrine.. On sent qu'il s'agit ici de la théorie et de la pratique des opérations qui résultent de la combinaison des lignes, des plans et des surfaces dans l'espace, et que M. Monge a fait connaître sous le nom de géométrie descriptive. La coupe des pierres, la charpente, certaines parties de la fortification et de l'architecture, la perspective, la gnomonique: en un mot, toutes les parties des mathématiques, soit pures, soit appliquées, dans lesquelles on considère l'espace avec ses trois dimensions, sont du ressort de ce complément nouveau de la géométrie élémentaire qui jusque-là s'était arrêtée à la mesure des aires et des volumes... Ce n'est pas qu'avant M. Monge, les géomètres n'eussent connu la méthode des projections et ne l'eussent employée à la résolution de plusieurs problèmes..., mais cette théorie... n'avait pas encore cette indépendance et cet enchaînement de questions qui en ont fait une véritable science...
Delambre.
La Géométrie descriptive donne des méthodes pour représenter exactement, sur un seul plan, tout corps susceptible d'une définition précise, et pour déduire de cette représentation les véritables grandeurs des diverses parties du corps que l'on considère.
C'est à l'aide de pareils dessins faits sur des aires planes, que les tailleurs de pierre et les charpentiers parviennent à donner aux matériaux solides des formes déterminées.
La Géométrie descriptive est donc aussi utile à l'ouvrier qui exécute un projet qu'à l'ingénieur qui l'a conçu. Ses principales applications sont la perspective, la théorie des ombres, la charpente, la coupe des pierres, le tracé des routes dans les pays accidentés, le défilement dans l'art des fortifications, etc., etc.
Rouché.
Selon la manière dont la position des sommets des angles d'un solide est définie, la construction de leurs projections peut être plus ou moins facile, et la nature de l'opération doit dépendre de celle de la définition. Il en est précisément de cet objet comme de l'Algèbre, dans laquelle il n'y a aucun procédé général pour mettre un problème en équations. Dans chaque cas particulier, la marche dépend de la manière dont la relation entre les quantités données et celles qui sont inconnues est exprimée; et ce n'est que par des exemples variés que l'on peut accoutumer les commençants à saisir ces relations et à les écrire par des équations. Il en est de même pour la Géométrie descriptive. C'est par des exemples nombreux et par l'usage de la règle et du compas dans les salles d'exercice que l'on peut acquérir l'habitude des constructions, et qu'on s'accoutume au choix des méthodes les plus simples et les plus élégantes, dans chaque cas particulier. Mais aussi, de même qu'en Analyse, lorsqu'un problème est mis en équations, il existe des procédés pour traiter ces équations, et pour en déduire les valeurs de chaque inconnue; de même aussi, dans la Géométrie descriptive, lorsque les projections sont faites, il existe des méthodes générales pour construire tout ce qui résulte de la forme et de la position respective des corps.
Ce n'est pas sans objet que nous comparons ici la Géométrie descriptive à l'Algèbre; ces deux sciences ont les rapports les plus intimes. Il n'y a aucune construction de Géométrie descriptive, qui ne puisse être traduite en Analyse; et lorsque les questions ne comportent pas plus de trois inconnues, chaque opération analytique peut être regardée comme l'écriture d'un spectacle en Géométrie.
Monge.
MÉCANIQUE
On connaît la déclaration attribuée à Archimède: «Donnez-moi un point d'appui et je soulèverai le monde.» Je ne veux pas en contester la beauté littéraire, mais quand on songe au nombre de tentatives insensées dont elle a été la cause, il peut être permis de dire que, pratiquement, elle est absolument vaine.
Privat-Deschanel.
Le monde, il s'agit sans doute de la terre. Comment l'homme pourrait-il prendre un point d'appui extérieur? Du reste la force d'un homme étant extrêmement petite par rapport au poids du globe, le déplacement de celui-ci serait insignifiant. Le mot célèbre n'exprime qu'une vue théorique.
On ne gagne rien avec les instruments, d'autant que, si l'on applique une petite force à un grand fardeau, il faut beaucoup de temps, et que, si on veut le transporter en très peu de temps, il faut une grande force...
Néanmoins les machines sont utiles, pour mouvoir de grands fardeaux tout d'un coup sans les diviser, parce que l'on a souvent beaucoup de temps et peu de force. Mais celui-là se tromperait qui voudrait abréger le temps en n'usant que d'une petite force, et montrerait qu'il n'entend pas la nature des machines ni la raison de leurs effets...
Il faut conclure de tout ce discours que l'on ne peut rien gagner en force qu'on ne le perde en temps, et conséquemment que ceux qui travaillent à suppléer la force et le temps tout ensemble, ne méritent nullement d'avoir du temps, puisqu'ils l'emploient si mal.
Galilée.
On pousse un corps avec la main, et l'on voit qu'il se meut dans une direction définie. À première vue, il semble qu'il n'y ait pas moyen de douter de la réalité de son mouvement ni de la direction qu'il suit. Cependant il est facile de montrer que non seulement nous pouvons avoir tort, mais que d'ordinaire nous avons tort de porter l'un ou l'autre de ces deux jugements. Voici par exemple un vaisseau que, pour plus de simplicité, nous supposerons mouillé à l'équateur,