Finite Element Analysis. Barna Szabó

Читать онлайн.
Название Finite Element Analysis
Автор произведения Barna Szabó
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119426462



Скачать книгу

alt="left-bracket upper M Superscript left-parenthesis k right-parenthesis Baseline right-bracket equals Start 4 By 4 Matrix 1st Row 1st Column m 11 Superscript left-parenthesis k right-parenthesis Baseline 2nd Column m 12 Superscript left-parenthesis k right-parenthesis Baseline 3rd Column midline-horizontal-ellipsis 4th Column m Subscript 1 comma p Sub Subscript k Subscript plus 1 Baseline 2nd Row 1st Column m 21 Superscript left-parenthesis k right-parenthesis Baseline 2nd Column m 22 Superscript left-parenthesis k right-parenthesis Baseline 3rd Column midline-horizontal-ellipsis 4th Column m Subscript 2 comma p Sub Subscript k Subscript plus 1 Baseline 3rd Row 1st Column vertical-ellipsis 2nd Column Blank 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 4th Row 1st Column m Subscript p Sub Subscript k Subscript plus 1 comma 1 Superscript left-parenthesis k right-parenthesis Baseline 2nd Column m Subscript p Sub Subscript k Subscript plus 1 comma 2 Superscript left-parenthesis k right-parenthesis Baseline 3rd Column midline-horizontal-ellipsis 4th Column m Subscript p Sub Subscript k Subscript plus 1 comma p Sub Subscript k Subscript plus 1 EndMatrix dot"/>

      Example 1.4 When c left-parenthesis x right-parenthesis equals c Subscript k is constant on Ik and the Legendre shape functions are used then the element‐level Gram matrix is strongly diagonal. For example, for p Subscript k Baseline equals 5 the Gram matrix is:

      (1.71)StartLayout 1st Row 1st Column m Subscript i i Superscript left-parenthesis k right-parenthesis Baseline equals 2nd Column StartFraction c Subscript k Baseline script l Subscript k Baseline Over 2 EndFraction StartFraction 1 Over 2 left-parenthesis 2 i minus 3 right-parenthesis EndFraction integral Subscript negative 1 Superscript plus 1 Baseline left-parenthesis upper P Subscript i minus 1 Baseline left-parenthesis xi right-parenthesis minus upper P Subscript i minus 3 Baseline left-parenthesis xi right-parenthesis right-parenthesis squared d xi 2nd Row 1st Column equals 2nd Column StartFraction c Subscript k Baseline script l Subscript k Baseline Over 2 EndFraction StartFraction 2 Over left-parenthesis 2 i minus 1 right-parenthesis left-parenthesis 2 i minus 5 right-parenthesis EndFraction comma i greater-than-or-equal-to 3 EndLayout

      and all off‐diagonal terms are zero for i greater-than-or-equal-to 3, with the exceptions:

      (1.72)m Subscript i comma i plus 2 Superscript left-parenthesis k right-parenthesis Baseline equals m Subscript i plus 2 comma i Superscript left-parenthesis k right-parenthesis Baseline equals minus StartFraction c Subscript k Baseline script l Subscript k Baseline Over 2 EndFraction StartFraction 1 Over left-parenthesis 2 i minus 1 right-parenthesis StartRoot left-parenthesis 2 i minus 3 right-parenthesis left-parenthesis 2 i plus 1 right-parenthesis EndRoot EndFraction comma i greater-than-or-equal-to 3 period

m Subscript i j Superscript left-parenthesis k right-parenthesis Baseline equals StartFraction c Subscript k Baseline script l Subscript k Baseline Over 2 EndFraction integral Subscript negative 1 Superscript 1 Baseline upper N Subscript i Baseline upper N Subscript j Baseline d xi almost-equals StartFraction c Subscript k Baseline script l Subscript k Baseline Over 2 EndFraction w Subscript i Baseline delta Subscript i j

      where wi is the weight of the ith Lobatto point. There is an integration error associated with this term because the integrand is a polynomial of degree 2 p. To evaluate this integral exactly n greater-than-or-equal-to left-parenthesis 2 p plus 3 right-parenthesis slash 2 Lobatto points would be required (see Appendix E), whereas only