Название | Applied Water Science |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119725268 |
References
Agunbiade. F. O and Moodley. B (2014). Pharmaceuticals as emerging organic contaminants in Umgeni River water system, Kwazulu-Natal South Africa. Environ Monit Assess 186: 7273–7291.
Aminot. Y, Fuster. L, Pardon. P, Menach. K. L and Budzinski. H (2018). Suspended solids moderate the degradation and sorption of wastewater derived pharmaceuticals in estuarine waters. Science of the total environment 612: 39–48.
Apul, O.G., Rowles III, L.S., Khalid, A., Karanfil, T., Richardson, S.D. and Saleh, N.B., 2020. Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. Environment International, 137, p.105586.
Arnold, K.E., Boxall, A.B.A., Brown, A.R., Cuthbert, R.J., Gaw, S., Hutchinson, TH, Jobling, S., Madden, J.C., Metcalfe, C.D., Naidoo, V., Shore, R.F., Smits, J.E., Taggart, M.A., Thompson, H.M., Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol. Lett. 9, 20130492, 2013. doi:10.1098/rsbl.2013.0492
Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, A-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V. et al., Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33(8), 1582–1614, 2015. doi:10.1016/j.biotechadv.2015.08.001
aus der Beek, T. F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environment-Global occurrences and perspectives, Environ. Toxicol. Chem. 35 (2016) 823–835. https://doi.org/10.1002/etc.3339.
Badejo, M.A., 2000b. Pesticide pollution in aquatic ecosystems in Nigeria and some African countries. In: Badejo, M.A., Van Straalen, N.M. (Eds.), Pollutants and their Effects on Terrestrial and Aquatic Ecosystems. College Press, Ibadan, pp. 43–51.
Bagnis. S, Fitzsimons. M, Snap. J, Tappin. A and Comber. S (2018). Sorption of active pharmaceutical ingredients in untreated wastewater effluent and effect of dilution in freshwater: Implication of an “impact zone” environment risk assessment approach. Science of the total environment 624: 333–341.
Bartros, M., Peñeulas, J., Pharmaceuticals and personal-care products in plants. Trends Plant Sci. 22(3), 194–203, 2017. doi:10.1016/j.tplants.2016.12.010
Bercu, J.P. N.J. Parke, J.M. Fiori, R.D. Meyerhoff, Human health risk assessments for three neuropharmaceutical compounds in surface waters, Regul. Toxicol. Pharmacol. (2008). https://doi.org/10.1016/j.yrtph.2008.01.014.
Boobis, A., Brown, P., Cronin, M.T.D., Edwards, J., Galli, C.L., Goodman, J., Jacobs, A., Kirkland, D., Luijten, M., et al., Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Critic. Rev. Toxicol. 47(8), 710-32. doi:10.1080/10408444.2017.1318822
Bottoni, P., Caroli, S., Caracciolo, A.B., Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 92(3), 549-565, 2010. doi:10.1080/02772241003614320
Bound, J.P., Voulvoulis, N., Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ. Health Perspect. 113(12), 1705–1711, 2005.
Boxall, A.B.A., The environmental side effects of medication. EMBO Rpt. 5(12), 1110-1116, 2004. doi:10.1038/sj.embor.7400307
Brodin, T., Piovano, S., Fick, J., Klaminder, J., Heynen, M., Jonsson, M., Ecological effects of pharmaceuticals in aquatic systems - impacts through behavioural alterations. Phil. Trans. R. Soc. B. 369, 20130580, 2014. doi:10.1098/rstb.2013.0580
Brooks, B.W., Foran, C.M., Richards, S.M., Weston, J., Turner, P.K., Stanely, J.K., Solomon, K.R. et al., Aquatic ecotoxicology of fluoxetine. Toxicol. Lett. 42, 169–183, 2003. doi:10.1016/S0378-427(03)00066-3
Brown. S., Kennedy, L., Cullington, M., Mihle, A., Lono-Batura, M., Relating pharmaceuticals and personal care products in bisolids to home exposure. Urban Agric. Reg. Food Syst. 4, 180005, 2019. doi:10.2134/urbanag2018.12.0005
Bruce, G.M. R.C. Pleus, S.A. Snyder, Toxicological relevance of pharmaceuticals in drinking water, Environ. Sci. Technol. (2010). https://doi.org/10.1021/es1004895.
Bu, Q., Shi, X., Yu, G., Huang, J., Wang, B., Assessing the the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg. Contaminants 2, 145–147, 2016. doi:10.1016/j.emcon.2016.05.003
Carter, L.J., Chefetz, B., Adbeen, Z., Boxall, A.B.A., Emerging investigator series: towards a framework for establishing the impact of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Processes Impacts. 21, 605, 2019. doi:10.1039/c9em00020h
Chen Z., Zhang W., Wang D., Ma T., Bai R. (2015) Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and reflocculation morphology. Water Research 83: 367–376.
Christensen, F.M. Pharmaceuticals in the environment - A human risk?, Regul. Toxicol. Pharmacol. 28, 212–221, (1998). https://doi.org/10.1006/rtph.1998.1253.
Christou, A. P. Karaolia, E. Hapeshi, C. Michael, D. Fatta-Kassinos, Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment, Water Res. (2017). https://doi.org/10.1016/j.watres.2016.11.033.
Colburn A., Vogler R.J., Patel A., Bezold M., Craven J., Liu C., Bhattacharyya D. (2019) Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects. Nanomaterials 9: 867; doi:10.3390/nano9060867.
Contardo-Jara, V., Lorenz, C., Pflugmacher, S., Nützmann, G.,, Kloas W., Wiegand, C., Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat. Toxicol. 105, 428–437, 2011. doi:10.1016/j.aquatox.2011.07.017
Couto, C.F. A.V. Santos, M.C.S. Amaral, L.C. Lange, L.H. de Andrade, A.F.S. Foureaux, B.S. Fernandes, Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal, J. Water Process Eng. (2020). https://doi.org/10.1016/j.jwpe.2019.101029.
Cunha D.L., Kuznetsov A., Araujo J.R., Neves R.S., Archanjo B.S., Canela M.C., Marques M. (2019) Optimization of Benzodiazepine Drugs Removal from Water by Heterogeneous Photocatalysis Using TiO2/Activated Carbon Composite. Water Air Soil Pollut 230:141. 2
Daneshvar. A, svanfelt. J, Kronberg. L and Weyhenmeyer. G. A (2010). Winter accumulation of acidic pharmaceuticals in Swedish River. Environ Sci Pollut Res 17:908–916.
Daughton, C.G., Pharmaceuticals and the environment (PiE): Evolution and impact o f the published literature revealed by bibliometric analysis. Sci. Tot. Environ. 562, 391-426, 2016. doi: 0.1016/j.scitotenv.2016.03.109
Daughton, C.G., Ruhoy, I.S., Environmental footprint of pharmaceuticals: the significance of factors beyond direct excretion to sewers. Environ. Toxicol. Chem. 28(2), 2495–2521, 2009.
Daughton, C.G., Ternes, T.A., Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health. Perspect. 107(6), 907–938, 1999.
De Gisi S., Lofrano G., Grassi M., Notarnicola M. (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 9: