Applied Water Science. Группа авторов

Читать онлайн.
Название Applied Water Science
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119725268



Скачать книгу

conceptualized the idea and finalized the manuscript. WG, AK, CD, NM-Z, and NC contributed equally to research design, data acquisition and analysis, and manuscript compilation.

      Agunbiade. F. O and Moodley. B (2014). Pharmaceuticals as emerging organic contaminants in Umgeni River water system, Kwazulu-Natal South Africa. Environ Monit Assess 186: 7273–7291.

      Aminot. Y, Fuster. L, Pardon. P, Menach. K. L and Budzinski. H (2018). Suspended solids moderate the degradation and sorption of wastewater derived pharmaceuticals in estuarine waters. Science of the total environment 612: 39–48.

      Apul, O.G., Rowles III, L.S., Khalid, A., Karanfil, T., Richardson, S.D. and Saleh, N.B., 2020. Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. Environment International, 137, p.105586.

      Arnold, K.E., Boxall, A.B.A., Brown, A.R., Cuthbert, R.J., Gaw, S., Hutchinson, TH, Jobling, S., Madden, J.C., Metcalfe, C.D., Naidoo, V., Shore, R.F., Smits, J.E., Taggart, M.A., Thompson, H.M., Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol. Lett. 9, 20130492, 2013. doi:10.1098/rsbl.2013.0492

      Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, A-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V. et al., Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33(8), 1582–1614, 2015. doi:10.1016/j.biotechadv.2015.08.001

      Badejo, M.A., 2000b. Pesticide pollution in aquatic ecosystems in Nigeria and some African countries. In: Badejo, M.A., Van Straalen, N.M. (Eds.), Pollutants and their Effects on Terrestrial and Aquatic Ecosystems. College Press, Ibadan, pp. 43–51.

      Bagnis. S, Fitzsimons. M, Snap. J, Tappin. A and Comber. S (2018). Sorption of active pharmaceutical ingredients in untreated wastewater effluent and effect of dilution in freshwater: Implication of an “impact zone” environment risk assessment approach. Science of the total environment 624: 333–341.

      Bartros, M., Peñeulas, J., Pharmaceuticals and personal-care products in plants. Trends Plant Sci. 22(3), 194–203, 2017. doi:10.1016/j.tplants.2016.12.010

      Bercu, J.P. N.J. Parke, J.M. Fiori, R.D. Meyerhoff, Human health risk assessments for three neuropharmaceutical compounds in surface waters, Regul. Toxicol. Pharmacol. (2008). https://doi.org/10.1016/j.yrtph.2008.01.014.

      Boobis, A., Brown, P., Cronin, M.T.D., Edwards, J., Galli, C.L., Goodman, J., Jacobs, A., Kirkland, D., Luijten, M., et al., Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Critic. Rev. Toxicol. 47(8), 710-32. doi:10.1080/10408444.2017.1318822

      Bottoni, P., Caroli, S., Caracciolo, A.B., Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 92(3), 549-565, 2010. doi:10.1080/02772241003614320

      Bound, J.P., Voulvoulis, N., Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ. Health Perspect. 113(12), 1705–1711, 2005.

      Boxall, A.B.A., The environmental side effects of medication. EMBO Rpt. 5(12), 1110-1116, 2004. doi:10.1038/sj.embor.7400307

      Brodin, T., Piovano, S., Fick, J., Klaminder, J., Heynen, M., Jonsson, M., Ecological effects of pharmaceuticals in aquatic systems - impacts through behavioural alterations. Phil. Trans. R. Soc. B. 369, 20130580, 2014. doi:10.1098/rstb.2013.0580

      Brooks, B.W., Foran, C.M., Richards, S.M., Weston, J., Turner, P.K., Stanely, J.K., Solomon, K.R. et al., Aquatic ecotoxicology of fluoxetine. Toxicol. Lett. 42, 169–183, 2003. doi:10.1016/S0378-427(03)00066-3

      Brown. S., Kennedy, L., Cullington, M., Mihle, A., Lono-Batura, M., Relating pharmaceuticals and personal care products in bisolids to home exposure. Urban Agric. Reg. Food Syst. 4, 180005, 2019. doi:10.2134/urbanag2018.12.0005

      Bruce, G.M. R.C. Pleus, S.A. Snyder, Toxicological relevance of pharmaceuticals in drinking water, Environ. Sci. Technol. (2010). https://doi.org/10.1021/es1004895.

      Carter, L.J., Chefetz, B., Adbeen, Z., Boxall, A.B.A., Emerging investigator series: towards a framework for establishing the impact of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Processes Impacts. 21, 605, 2019. doi:10.1039/c9em00020h

      Chen Z., Zhang W., Wang D., Ma T., Bai R. (2015) Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and reflocculation morphology. Water Research 83: 367–376.

      Christensen, F.M. Pharmaceuticals in the environment - A human risk?, Regul. Toxicol. Pharmacol. 28, 212–221, (1998). https://doi.org/10.1006/rtph.1998.1253.

      Christou, A. P. Karaolia, E. Hapeshi, C. Michael, D. Fatta-Kassinos, Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment, Water Res. (2017). https://doi.org/10.1016/j.watres.2016.11.033.

      Colburn A., Vogler R.J., Patel A., Bezold M., Craven J., Liu C., Bhattacharyya D. (2019) Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects. Nanomaterials 9: 867; doi:10.3390/nano9060867.

      Contardo-Jara, V., Lorenz, C., Pflugmacher, S., Nützmann, G.,, Kloas W., Wiegand, C., Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat. Toxicol. 105, 428–437, 2011. doi:10.1016/j.aquatox.2011.07.017

      Couto, C.F. A.V. Santos, M.C.S. Amaral, L.C. Lange, L.H. de Andrade, A.F.S. Foureaux, B.S. Fernandes, Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal, J. Water Process Eng. (2020). https://doi.org/10.1016/j.jwpe.2019.101029.

      Cunha D.L., Kuznetsov A., Araujo J.R., Neves R.S., Archanjo B.S., Canela M.C., Marques M. (2019) Optimization of Benzodiazepine Drugs Removal from Water by Heterogeneous Photocatalysis Using TiO2/Activated Carbon Composite. Water Air Soil Pollut 230:141. 2

      Daneshvar. A, svanfelt. J, Kronberg. L and Weyhenmeyer. G. A (2010). Winter accumulation of acidic pharmaceuticals in Swedish River. Environ Sci Pollut Res 17:908–916.

      Daughton, C.G., Pharmaceuticals and the environment (PiE): Evolution and impact o f the published literature revealed by bibliometric analysis. Sci. Tot. Environ. 562, 391-426, 2016. doi: 0.1016/j.scitotenv.2016.03.109

      Daughton, C.G., Ternes, T.A., Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health. Perspect. 107(6), 907–938, 1999.

      De Gisi S., Lofrano G., Grassi M., Notarnicola M. (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 9: