Applied Water Science. Группа авторов

Читать онлайн.
Название Applied Water Science
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119725268



Скачать книгу

damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

       Library of Congress Cataloging-in-Publication Data

      ISBN 978-1-119-72476-6

      Cover image: Pixabay.com

      Cover design by Russell Richardson

      Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

      Printed in the USA

      10 9 8 7 6 5 4 3 2 1

      Preface

      Applied Water Science I-Fundamentals and Applications

      Inamuddin1, Mohd Imran Ahamed2, Rajender Boddula3 and Tauseef Ahmad Rangreez4

       1Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India

       2Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India

       3CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China

       4Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India

      This book explores the basic concepts and applications of water science. It provides an in-depth look at water pollutants’ classification, water recycling, qualitative and quantitative analysis, and efficient wastewater treatment methodologies. It also provides occurrence, human health risk assessment, strategies for removal of radionuclides, and pharmaceuticals in aquatic systems. The book chapters are written by leading researchers throughout the world. This book is an invaluable guide to students, professors, scientists, and R&D industrial specialists working in the field of environmental science, geoscience, water science, physics, and chemistry.

      Chapter 1 provides a general overview of different analytical methodologies that have been proposed for the analysis of phthalic acid esters in water samples. Special attention has been given to methods based on the application of sorbent-based microextraction techniques (i.e., solid-phase microextraction and micro solid-phase extraction magnetized or not, among others).

      Chapter 2 discusses the occurrence, dissemination, and behavior of pharmaceuticals in aquatic environments. Human exposure pathways and health risks, including the emergence of antimicrobial resistance are summarized. Risk factors promoting human exposure in developing countries are discussed. Methods for removal of pharmaceuticals and future research directions are also highlighted.

      Chapter 3 focuses on the latest developments in the methods for the oil/water separation through filtration of the membrane using distinct materials with surface properties that are super wetting.

      Chapter 4 presents the fundamental studies on the interdisciplinary issue of microplastic-based pollution of water environments; the scientific approach and roadmap to this complex problem are discussed.

      Chapter 5 summarizes the routes of formation of organic and inorganic chloramines upon chlorination disinfection. Chloramine’s possible health risks to humans including mutagenicity and hemolytic anemia are discussed. Further, the analytical methods for their control in aqueous environments are summarized. Selective methods including chromatographic and pH-controlled colorimetric techniques are highlighted.

      Chapter 7 provides a general description of biochar material from the preparation (synthetic methods) to its application as a powerful adsorbent in the wastewater treatment field. Recent advancements of biochar-supported materials with a focus on their applications for different contaminants’ removal and the underlying mechanisms are also discussed.

      Chapter 8 focuses on biological processes for swine wastewater treatment. Therefore, it details the swine wastewater characteristics, microorganisms, metabolic pathways involved, and biological processes in swine wastewater treatment. Besides, challenges and prospects in this research field are also presented.

      Chapter 9 discusses various imperative techniques to detect hazardous metal ions in various water reservoirs. The toxicological effects of various metal ions on living beings and atmosphere along with their detection limits, in addition to future perspectives of these procedures, are highlighted.

      Chapter 10 discusses the production of hydrogen-rich water and its role in medical applications. Firstly, a concise discussion of two of the production methods of hydrogen-rich water is provided. Lastly, the medical benefits, medical applications, and the safety of hydrogen-rich water are discussed in detail.

      Chapter 11 focuses on the application of hydrosulfide treatment in medicine, agriculture, and industry fields. Hydrosulfide anion is considered as an innovative gaseous signaling molecule and plays significant biological roles in the organisms. Its performance is discussed in detail for the improvement of biotic/abiotic stress tolerance of cells.

      Chapter 12 discusses the properties of available radionuclides including uranium, lead, polonium, cesium, strontium, thorium, radon, and radium. Moreover, the health problem caused due to these radionuclides contaminated water is also highlighted. Techniques involved in the removal of radionuclides including ion exchange, aeration, filtration, nanofiltration, and flocculation are summarized.

      Chapter 13 reviews the developing applications of membrane contactors in water treatment and desalination demonstrating their ability to substitute or supplement the conventional separation processes. The advantages and limitations of membrane contactors are discussed and their potential for value recovery from spent streams of small and medium