Electromagnetic Metasurfaces. Christophe Caloz

Читать онлайн.
Название Electromagnetic Metasurfaces
Автор произведения Christophe Caloz
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119525172



Скачать книгу

r comma omega right-parenthesis"/> (e.g. lenses and refractors) and, to a lesser extent, ModifyingAbove Above ModifyingAbove chi With bar With bar left-parenthesis bold k comma omega right-parenthesis (e.g. angularly asymmetric absorbers) and ModifyingAbove Above ModifyingAbove chi With bar With bar left-parenthesis bold r comma bold k comma omega right-parenthesis (e.g. diffractionless refractors). It should be emphasized that this rich diversity of space–time variance and dispersion illustrated in Figure 2.1 is restricted to linear metamaterials. As we will see in Section 4.3, the introduction of nonlinearity further increases the number of degrees of freedom for controlling electromagnetic waves.

Schematic illustration of the classification of (bianisotropic) metamaterials in terms of their space-time variance and dispersion. The I- and D-notations refer to the inverse and direct space/time domains.

      (2.5a)StartLayout 1st Row 1st Column bold-script upper D left-parenthesis t right-parenthesis 2nd Column equals epsilon 0 bold-script upper E left-parenthesis t right-parenthesis plus integral Subscript negative infinity Superscript upper T Baseline left-parenthesis epsilon 0 chi overTilde overbar overbar Subscript ee Baseline left-parenthesis t minus t Superscript prime Baseline right-parenthesis dot bold-script upper E left-parenthesis t Superscript prime Baseline right-parenthesis plus StartFraction 1 Over c 0 EndFraction chi overTilde overbar overbar Subscript em Baseline left-parenthesis t minus t Superscript prime Baseline right-parenthesis dot bold-script upper H left-parenthesis t Superscript prime Baseline right-parenthesis right-parenthesis normal d t Superscript prime Baseline comma EndLayout

      (2.5b)StartLayout 1st Row 1st Column bold-script upper B left-parenthesis t right-parenthesis 2nd Column equals mu 0 bold-script upper H left-parenthesis t right-parenthesis plus integral Subscript negative infinity Superscript upper T Baseline left-parenthesis mu 0 chi overTilde overbar overbar Subscript mm Baseline left-parenthesis t minus t Superscript prime Baseline right-parenthesis dot bold-script upper H left-parenthesis t Superscript prime Baseline right-parenthesis plus StartFraction 1 Over c 0 EndFraction chi overTilde overbar overbar Subscript me Baseline left-parenthesis t minus t Superscript prime Baseline right-parenthesis dot bold-script upper E left-parenthesis t Superscript prime Baseline right-parenthesis right-parenthesis normal d t Superscript prime Baseline comma EndLayout

      where only the time dependence of the fields is explicitly mentioned and the spatial dependence is omitted for conciseness. These expressions indicate that the material responses, bold-script upper D and bold-script upper B, are the temporal convolution of the susceptibilities and excitation functions. They may be alternatively written as

      (2.6b)StartLayout 1st Row 1st Column bold-script upper B left-parenthesis t right-parenthesis 2nd Column equals mu 0 bold-script upper H left-parenthesis t right-parenthesis plus mu 0 ModifyingAbove Above ModifyingAbove Above ModifyingAbove chi With tilde With bar With bar Subscript mm Baseline left-parenthesis t right-parenthesis asterisk bold-script upper H left-parenthesis t right-parenthesis plus StartFraction 1 Over c 0 EndFraction ModifyingAbove Above ModifyingAbove Above ModifyingAbove chi With tilde With bar With bar Subscript me Baseline left-parenthesis t right-parenthesis asterisk bold-script upper E left-parenthesis t right-parenthesis period EndLayout

      

      2.2.1 Causality and Kramers–Kronig Relations

      We have mentioned that matter is temporally dispersive and shown that the corresponding medium parameters at a given instant of time depend on the excitation at previous times. Combining these facts with the concept of causality allows one to relate the real and imaginary parts of the material parameters to each other. The corresponding relations are referred to as the Kramers–Kronig relations. Given their crucial importance and given their unclear presentation in the literature, we shall now precisely derive them.

      The fundamental tenet of causality is that an effect cannot precede its cause, so that, in particular, matter cannot respond before being excited. Therefore, assuming that a medium starts to be excited at