Electromagnetic Metasurfaces. Christophe Caloz

Читать онлайн.
Название Electromagnetic Metasurfaces
Автор произведения Christophe Caloz
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119525172



Скачать книгу

minus chi overbar overbar Subscript em Superscript normal upper T Baseline period"/>

      This section derives the time-average bianisotropic Poynting theorem [16, 81, 140], which provides the general conditions for gain and loss in terms of susceptibility tensors.

      The time-domain Maxwell–Faraday and Maxwell–Ampère equations, assuming the presence of electric current sources, bold-script upper J, and magnetic current sources, bold-script upper K, are, respectively, given as

      with the bianisotropic constitutive relations (2.4) defined by

      (2.54b)StartLayout 1st Row 1st Column bold-script upper D 2nd Column equals epsilon 0 bold-script upper E plus bold-script upper P comma bold-script upper P equals epsilon 0 chi overbar overbar Subscript ee Baseline dot bold-script upper E plus StartFraction 1 Over c 0 EndFraction chi overbar overbar Subscript em Baseline dot bold-script upper H period EndLayout

      (2.56)bold-script upper H dot left-parenthesis nabla times bold-script upper E right-parenthesis minus bold-script upper E dot left-parenthesis nabla times bold-script upper H right-parenthesis equals nabla dot left-parenthesis bold-script upper E times bold-script upper H right-parenthesis comma

      where the cross product bold-script upper E times bold-script upper H corresponds to the Poynting vector bold-script upper S. This transforms (2.55) into

      We shall now simplify the last two terms of this relation to provide the final form of the bianisotropic Poynting theorem. We show the derivations only for negative bold-script upper E dot StartFraction partial-differential bold-script upper D Over partial-differential t EndFraction, but similar developments can be made for negative bold-script upper H dot StartFraction partial-differential bold-script upper B Over partial-differential t EndFraction. From bold-script upper D equals epsilon 0 bold-script upper E plus bold-script upper P, we have that

      (2.58)negative bold-script upper E dot StartFraction partial-differential bold-script upper D Over partial-differential t EndFraction equals negative bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction left-parenthesis epsilon 0 bold-script upper E plus bold-script upper P right-parenthesis equals minus epsilon 0 bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper E minus bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper P period

      (2.59)negative bold-script upper E dot StartFraction partial-differential bold-script upper D Over partial-differential t EndFraction equals minus one half epsilon 0 bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper E minus one half bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper P minus one half epsilon 0 bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper E minus one half bold-script upper E dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper P period

      Manipulating the terms in the right-hand side of this new relation, adding the extra null term one half bold-script upper P dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper E minus one half bold-script upper P dot StartFraction partial-differential Over partial-differential t EndFraction bold-script upper E, and using the chain rule leads to

      (2.60)