Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Читать онлайн.
Название Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Автор произведения Patrick Muldowney
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119595526



Скачать книгу

href="#fb3_img_img_f01d43d1-2281-5026-a724-1c07d6d11c09.png" alt="alpha Subscript d Baseline equals 1 minus alpha Subscript u"/>. Taking x left-parenthesis 0 right-parenthesis equals 10, let upper B element-of script upper A be the set consisting of the 16 elements

x equals left-parenthesis x left-parenthesis 1 right-parenthesis comma x left-parenthesis 2 right-parenthesis comma x left-parenthesis 3 right-parenthesis comma x left-parenthesis 4 right-parenthesis right-parenthesis comma x left-parenthesis s right-parenthesis equals x left-parenthesis s minus 1 right-parenthesis plus-or-minus 1 for s equals 1 comma 2 comma 3 comma 4 semicolon

      and let upper P be an atomic measure with upper P left-parenthesis StartSet y EndSet right-parenthesis equals 0 if y not-an-element-of upper B, and, for x element-of upper B,

      (2.16)upper P left-parenthesis StartSet x EndSet right-parenthesis equals beta 1 beta 2 beta 3 beta 4 where beta Subscript s Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column alpha Subscript u Baseline if x left-parenthesis s right-parenthesis 2nd Column equals 3rd Column x left-parenthesis s minus 1 right-parenthesis plus 1 comma 2nd Row 1st Column alpha Subscript d Baseline if x left-parenthesis s right-parenthesis 2nd Column equals 3rd Column x left-parenthesis s minus 1 right-parenthesis minus 1 EndLayout

      (2.17)upper P left-parenthesis StartSet x EndSet right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column one sixteenth 2nd Column for 3rd Column x element-of upper B comma 2nd Row 1st Column 0 2nd Column for 3rd Column x not-an-element-of upper B period EndLayout

      As in previous versions of the sample space normal upper Omega, this construction imposes probabilities on the outcomes w left-parenthesis 4 right-parenthesis or bold upper S left-parenthesis x right-parenthesis, by means of the relation

bold upper S Superscript negative 1 Baseline left-parenthesis upper S right-parenthesis equals upper A element-of script upper A comma upper P left-parenthesis upper S right-parenthesis equals upper P left-parenthesis bold upper S Superscript negative 1 Baseline left-parenthesis upper S right-parenthesis right-parenthesis equals upper P left-parenthesis upper A right-parenthesis

      for measurable sets upper S in the range of bold upper S, since bold upper S is clearly a measurable function on the domain normal upper Omega. Thus, for outcomes w left-parenthesis 4 right-parenthesis equals negative 1 or negative 2, upper S equals StartSet negative 1 comma negative 2 EndSet and

StartLayout 1st Row 1st Column bold upper S Superscript negative 1 Baseline left-parenthesis upper S right-parenthesis 2nd Column equals 3rd Column upper A equals left-brace left-parenthesis x left-parenthesis 1 right-parenthesis comma x left-parenthesis 2 right-parenthesis comma x left-parenthesis 3 right-parenthesis comma x left-parenthesis 4 right-parenthesis right-parenthesis right-brace element-of script upper A 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartSet left-parenthesis 11 comma 10 comma 9 comma 10 right-parenthesis comma left-parenthesis 9 comma 8 comma 7 comma 8 right-parenthesis comma left-parenthesis 9 comma 10 comma 11 comma 10 right-parenthesis comma left-parenthesis 11 comma 10 comma 11 comma 10 right-parenthesis EndSet comma 3rd Row 1st Column upper P left-parenthesis upper S right-parenthesis 2nd Column equals 3rd Column upper P left-parenthesis upper A right-parenthesis equals four sixteenths left-parenthesis referring back to Table 2.4 right-parenthesis period EndLayout

      

      The constructions in Sections 2.3 and 2.4 purported to be about stochastic integration. While a case can be made that (2.6) and (2.7) are actually stochastic integrals, such simple examples are not really what the standard or classical theory of Chapter 1 is all about. The examples and illustrations in Sections 2.3 and 2.4 may not really be much help in coming to grips with the standard theory of stochastic integrals outlined in Chapter 1.

      This is because Chapter 1, on the definition and meaning of classical stochastic integration, involves subtle passages to a limit, whereas (2.6) and (2.7) involve only finite sums and some elementary probability calculations.

      From the latter point of view, introducing probability measure spaces and random‐variables‐as‐measurable‐functions seems to be an unnecessary complication. So, from such a straightforward starting point, why does the theory become so challenging and “messy”, as portrayed in Chapter 1