Building an Effective Security Program for Distributed Energy Resources and Systems. Mariana Hentea

Читать онлайн.
Название Building an Effective Security Program for Distributed Energy Resources and Systems
Автор произведения Mariana Hentea
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119070436



Скачать книгу

in particular expect to integrate all connected devices on a single home network – specifically on Wi‐Fi networks. They may embrace a range of connected applications such as home security, smart energy, and in‐vehicle infotainment. Wi‐Fi enables human interaction with the IoE [Wi‐Fi 2014].

      An enormous range of device manufacturers, service providers, and software makers stand to build entirely new businesses addressing the IoE opportunity. However, this opportunity brings more security and privacy concerns for the consumers and businesses that support various applications.

      Networked embedded systems have emerged under various names such as Internet/Web of Things/Objects, Internet of Everything, smart objects, Cooperating Objects, Industry 4.0, the Industrial Internet, cyber–physical systems, M2M, the Internet of Everything, the Smarter Planet, TSensors (Trillion Sensors), or the Fog (like the cloud, but closer to the ground). The vision is of a technology that deeply connects our physical world with our information world, although one may argue on the differences and their focus. In this research paper [Karnouskos 2011], the author argues that does not really differentiate when it refers to them as an amalgamation of computational and physical properties.

      However, the trend is toward integration and interaction of the physical world with the information world. Recently, the community has come to understand that the principal challenges in embedded systems stem from their interaction with physical processes, and not from their limited resources. Since CPS emerge as a distinct category, the following section is an overview of this concept.

      2.1.3 Cyber–Physical Systems

      The term cyber–physical systems was coined by Helen Gill at the National Science Foundation in the United States in 2006 [CPS 2006]. CPS comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic [NIST CPS].

Schematic illustration of simple cyber-physical representation.

       First, the physical plant is the physical part of a CPS, not realized with computers or digital networks; it can include mechanical parts, biological or chemical processes and human operators.

       Second, there are one or more computational platforms, which consist of sensors, actuators, one or more computers, and (possibly) one or more operating systems (OS).

       Third, there is a network fabric, which provides the mechanisms for the computers to communicate; the platforms and the network fabric form the cyber part of the CPS.

      A more detailed and current definition of CPS is provided by NIST [NIST SP1500‐201]:

      Cyber–physical systems integrate computation, communication, sensing, and actuation with physical systems to fulfill time‐sensitive functions with varying degrees of interaction with the environment, including human interaction.

Schematic illustration of the NIST CPS conceptual model.

      Source: [NIST SP1500‐201]. Public Domain.

      As shown in Figure 2.8, CPS may be as simple as an individual device (a device that has an element of computation and interacts with the physical world through sensing and actuation), or a CPS can consist of one or more cyber–physical devices that form a system or can be an SoS, consisting of multiple systems that consist of multiple devices. This pattern is recursive and depends on one's perspective (e.g. a device from one perspective may be a system from another perspective). Ultimately, a CPS must contain the decision flow together with at least one of the flows for information or action. The information flow represents digitally the measurement of the physical state of the physical world, while the action flow impacts the physical state of the physical world. This allows for collaborations from small and medium scale up to city/nation/world scale.

      Source: Adapted from [NIST SP1500‐201].

Characteristic Description Remarks
Cyber and physical Combination of cyber and physical components
Connectedness Generally involves sensing, computation and actuation Involves combination of IT and OT with associated timing constraints
System of systems (SoS) May bridge multiple purposes and time and data domains Different time domains may reference different time scales or have different granularities or accuracies Time scale: a system of unambiguous ordering of events
Emergent behaviors Open nature of CPS composition Understanding a behavior that cannot be reduced to a single CPS subsystem, but comes about through the interaction of possibly many CPS subsystems
Methodology A methodology needed to ensuring interoperability, managing evolution, and dealing with emergent effects Example: NIST 1500‐201 framework
Repurposed Other purpose use beyond applications that were