Kuidas mõista andmestunud maailma. Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,

Читать онлайн.
Название Kuidas mõista andmestunud maailma
Автор произведения Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,
Жанр Руководства
Серия
Издательство Руководства
Год выпуска 0
isbn 9789985588949



Скачать книгу

J.; Lin, Y.-W.; Goodale, P. 2016. Data journeys: Capturing the socio-material constitution of data objects and flows. – Big Data & Society 3, 2. https://doi.org/10.1177/2053951716654502.

      Bengio, Y.; Deleu, T.; Rahaman, N.; Ke, R.; Lachapelle, S.; Bilaniuk, O.; Goyal, A.; Pal, C. 2019. A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. – ArXiv.Org. http://search.proquest.com/docview/2174081487/ ?pq-origsite=primo.

      Beraldo, D.; Milan, S. 2019. From data politics to the contentious politics of data. – Big Data & Society 6, 2, 2053951719885967. https://doi.org/10.1177/2053951719885967.

      Bhaskar, R. 2008. A Realist Theory of Science. Verso.

      Bowker, G. C. 2005. Memory Practices in the Sciences. MIT Press.

      Breiman, L. 2001. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). – Statistical Science 16, 3, 199–231. https://doi.org/10.1214/ss/1009213726.

      Chun, W. H. K. 2018. Queerying Homophily Muster der Netzwerkanalyse. – Zeitschrift Für Medienwissenschaften 10, 1, 131–148. https://doi.org/10.14361/zfmw-2018-0112.

      Cioffi-Revilla, C. 2014. Introduction to Computational Social Science: Principles and Applications. Springer.

      Couldry, N.; Mejias, U. 2018. Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject. – Television and New Media, 1–14.

      Couldry, N.; Mejias, U. 2019. The Costs of Connection: How Data Is Colonizing Human Life and Appropriating It for Capitalism. Stanford University Press.

      Dalton, C. M.; Taylor, L.; Thatcher, J. 2016. Critical Data Studies: A dialog on data and space. – Big Data & Society 3, 1. https://doi.org/10.1177/2053951716648346.

      Dellaposta, D.; Shi, Y.; Macy, M. 2015. Why do liberals drink lattes? – American Journal of Sociology 120, 5, 1473.

      Dijck, J. van; Poell, T.; Waal, M. de 2018. The Platform Society: Public Values in a Connective World. Oxford University Press.

      D’Ignazio, C.; Klein, L. F. 2020. Data Feminism. Cambridge, MA: MIT Press.

      Eklund, L.; Stamm, I.; Liebermann, W. K. 2019. The crowd in crowdsourcing: Crowdsourcing as a pragmatic research method. – First Monday 24, 10. https://doi.org/10.5210/fm.v24i10.9206.

      EP 2016 = European Parliament and Council of the European Union. Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (Data Protection Directive), L119, 4 May 2016, implementation date 25 May 2018.

      Fuchs, C. 2018. Capitalism, Patriarchy, Slavery, and Racism in the Age of Digital Capitalism and Digital Labour. – Critical Sociology 44, 4/5, 677–702. https://doi.org/10.1177/0896920517691108.

      Gitelman, L. ja Jackson, V. 2013. „Raw Data“ is an Oxymoron. Cambridge MA: MIT Press.

      Goriunova, O. 2019. The Digital Subject: People as Data as Persons. – Theory, Culture and Society 36, 6, 125–145. https://doi.org/10.1177/0263276419840409.

      Gupta, R.; Gupta, H.; Mohania, M. 2012. Cloud computing and big data analytics: What is new from database perspective? – Big Data Analytics: Proceedings of First International Conference, BDA 2012, New Delhi, India, December, Springer, 42–61.

      Helbing, D. 2013. Globally networked risks and how to respond. – Nature 497 (7447), 51–59. https://doi.org/10.1038/nature12047.

      Hepp, A. 2020. Deep Mediatization. Routledge.

      Hindman, M. 2015. Building Better Models: Prediction, Replication, and Machine Learning in the Social Sciences. – The Annals of the American Academy of Political and Social Science 659, 1, 48–62. https://doi.org/10.1177/0002716215570279.

      Hintz, A.; Dencik, L.; Wahl-Jorgensen, K. 2019. Digital citizenship in a datafied society. Polity.

      Hopkins, P. 2019. Social geography I: Intersectionality. – Progress in Human Geography 43, 5, 937–947. https://doi.org/10.1177/0309132517743677.

      Just, N.; Latzer, M. 2017. Governance by algorithms: Reality construction by algorithmic selection on the Internet. – Media, Culture and Society 39, 2, 238–258. https://doi.org/10.1177/0163443716643157.

      Kennedy, H.; Moss, G. 2015. Known or knowing publics? Social media data mining and the question of public agency. http://eprints.whiterose.ac.uk/91180/1/2053951715611145.full.pdf.

      Kitchin, R. 2014a. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage.

      Kitchin, R. 2014b. Big Data, new epistemologies and paradigm shifts. – Big Data & Society 1, 1. https://doi.org/10.1177/2053951714528481.

      Lazega, E.; Snijders, T. A. B. 2016. Multilevel Network Analysis for the Social Sciences: Theory, Methods and Applications. Methodos Series Book 12. Springer. http://sfx.ethz.ch/sfx_locater?sid=ALEPH:EBI01&genre=book&isbn=9783319245201.

      Lupton, D. 2015. The Thirteen Ps of Big Data. https://simplysociology.wordpress.com/2015/05/11/the-thirteen-ps-of-big-data/.

      Lupton, D. 2020. Data Selves: More-than-human Perspectives. Polity.

      Manovich, L. 2017. Cultural Analytics, Social Computing and Digital Humanities. – The datafied society: Studying culture through data. Eds. Mirko Tobias Schäfer, Karin van Es. Amsterdam University Press, 55–68.

      Markham, A. N. 2016. Troubling the Concept of Data in Qualitative Digital Research. – U. Flick (ed.), The Sage Handbook of Qualitative Data Collection. Sage, 511–524.

      Masso, A.; Männiste, M.; Siibak, A. 2020. ‘End of Theory’ in the Area of Big Data: Methodological Practices and Challenges in the Social Media Studies. – Acta Baltica Historiae et Philosophiae Scientiarum 8, 1, 33−61.

      McBride, K.; Toots, M.; Kalvet, T.; Krimmer, R. 2018. Leader in e-Government, Laggard in Open Data: Exploring the Case of Estonia. – Revue Française d’administration Publique 167, 3, 613–625. https://doi.org/10.3917/rfap.167. 0613.

      Milan, S.; Velden, L. van der 2016. The Alternative Epistemologies of Data Activism. – Digital Culture and Society 2, 2, 2364–2114. https://doi.org/10.14361/dcs-2016-0205.

      Männiste, M.; Masso, A. 2020. ‘Three Drops of Blood for the Devil’: Data Pioneers as Intermediaries of Algorithmic Governance Ideals. – Mediální Studia | Media Studies 14, 1, 55−74.

      Mühlhoff, R. 2019. Human-aided artificial intelligence: Or, how to run large computations in human brains? Toward a media sociology of machine learning. – New Media and Society, 1461444819885334. https://doi.org/10.1177/1461444819885334.

      Park,