Название | Aristotle: The Complete Works |
---|---|
Автор произведения | Aristotle |
Жанр | Философия |
Серия | |
Издательство | Философия |
Год выпуска | 0 |
isbn | 9782378078553 |
Again, look and see if, supposing the one to be the same as something, the other also is the same as it: for if they be not both the same as the same thing, clearly neither are they the same as one another.
Moreover, examine them in the light of their accidents or of the things of which they are accidents: for any accident belonging to the one must belong also to the other, and if the one belong to anything as an accident, so must the other also. If in any of these respects there is a discrepancy, clearly they are not the same.
See further whether, instead of both being found in one class of predicates, the one signifies a quality and the other a quantity or relation. Again, see if the genus of each be not the same, the one being ‘good’ and the other evil’, or the one being ‘virtue’ and the other ‘knowledge’: or see if, though the genus is the same, the differentiae predicted of either be not the same, the one (e.g.) being distinguished as a ‘speculative’ science, the other as a ‘practical’ science. Likewise also in other cases.
Moreover, from the point of view of ‘degrees’, see if the one admits an increase of degree but not the other, or if though both admit it, they do not admit it at the same time; just as it is not the case that a man desires intercourse more intensely, the more intensely he is in love, so that love and the desire for intercourse are not the same.
Moreover, examine them by means of an addition, and see whether the addition of each to the same thing fails to make the same whole; or if the subtraction of the same thing from each leaves a different remainder. Suppose (e.g.) that he has declared ‘double a half’ to be the same as ‘a multiple of a half’: then, subtracting the words ‘a half’ from each, the remainders ought to have signified the same thing: but they do not; for ‘double’ and ‘a multiple of’ do not signify the same thing.
Inquire also not only if some impossible consequence results directly from the statement made, that A and B are the same, but also whether it is possible for a supposition to bring it about; as happens to those who assert that ‘empty’ is the same as ‘full of air’: for clearly if the air be exhausted, the vessel will not be less but more empty, though it will no longer be full of air. So that by a supposition, which may be true or may be false (it makes no difference which), the one character is annulled and not the other, showing that they are not the same.
Speaking generally, one ought to be on the look-out for any discrepancy anywhere in any sort of predicate of each term, and in the things of which they are predicated. For all that is predicated of the one should be predicated also of the other, and of whatever the one is a predicate, the other should be a predicate of it as well.
Moreover, as ‘sameness’ is a term used in many senses, see whether things that are the same in one way are the same also in a different way. For there is either no necessity or even no possibility that things that are the same specifically or generically should be numerically the same, and it is with the question whether they are or are not the same in that sense that we are concerned.
Moreover, see whether the one can exist without the other; for, if so, they could not be the same.
<
div id="section65" class="section" title="2">
2
Such is the number of the commonplace rules that relate to ‘sameness’. It is clear from what has been said that all the destructive commonplaces relating to sameness are useful also in questions of definition, as was said before:’ for if what is signified by the term and by the expression be not the same, clearly the expression rendered could not be a definition. None of the constructive commonplaces, on the other hand, helps in the matter of definition; for it is not enough to show the sameness of content between the expression and the term, in order to establish that the former is a definition, but a definition must have also all the other characters already announced.
<
div id="section66" class="section" title="3">
3
This then is the way, and these the arguments, whereby the attempt to demolish a definition should always be made. If, on the other hand, we desire to establish one, the first thing to observe is that few if any who engage in discussion arrive at a definition by reasoning: they always assume something of the kind as their starting points-both in geometry and in arithmetic and the other studies of that kind. In the second place, to say accurately what a definition is, and how it should be given, belongs to another inquiry. At present it concerns us only so far as is required for our present purpose, and accordingly we need only make the bare statement that to reason to a thing’s definition and essence is quite possible. For if a definition is an expression signifying the essence of the thing and the predicates contained therein ought also to be the only ones which are predicated of the thing in the category of essence; and genera and differentiae are so predicated in that category: it is obvious that if one were to get an admission that so and so are the only attributes predicated in that category, the expression containing so and so would of necessity be a definition; for it is impossible that anything else should be a definition, seeing that there is not anything else predicated of the thing in the category of essence.
That a definition may thus be reached by a process of reasoning is obvious. The means whereby it should be established have been more precisely defined elsewhere, but for the purposes of the inquiry now before us the same commonplace rules serve. For we have to examine into the contraries and other opposites of the thing, surveying the expressions used both as wholes and in detail: for if the opposite definition defines that opposite term, the definition given must of necessity be that of the term before us. Seeing, however, that contraries may be conjoined in more than one way, we have to select from those contraries the one whose contrary definition seems most obvious. The expressions, then, have to be examined each as a whole in the way we have said, and also in detail as follows. First of all, see that the genus rendered is correctly rendered; for if the contrary thing be found in the contrary genus to that stated in the definition, and the thing before you is not in that same genus, then it would clearly be in the contrary genus: for contraries must of necessity be either in the same genus or in contrary genera. The differentiae, too, that are predicated of contraries we expect to be contrary, e.g. those of white and black, for the one tends to pierce the vision, while the other tends to compress it. So that if contrary differentiae to those in the definition are predicated of the contrary term, then those rendered in the definition would be predicated of the term before us. Seeing, then,