Название | Essays: Scientific, Political, & Speculative (Vol. 1-3) |
---|---|
Автор произведения | Spencer Herbert |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4064066389857 |
Passing from this hypothetical illustration, which must be taken for what it is worth, without prejudice to the general argument, let us descend to a more certain order of evidence. It is now generally agreed among geologists and physicists that the Earth was at one time a mass of molten matter. If so, it was at that time relatively homogeneous in consistence, and, in virtue of the circulation which takes place in heated fluids, must have been comparatively homogeneous in temperature; and it must have been surrounded by an atmosphere consisting partly of the elements of air and water, and partly of those various other elements which are among the more ready to assume gaseous forms at high temperatures. That slow cooling by radiation which is still going on at an inappreciable rate, and which, though originally far more rapid than now, necessarily required an immense time to produce any decided change, must ultimately have resulted in the solidification of the portion most able to part with its heat—namely, the surface. In the thin crust thus formed we have the first marked differentiation. A still further cooling, a consequent thickening of this crust, and an accompanying deposition of all solidifiable elements contained in the atmosphere, must finally have been followed by the condensation of the water previously existing as vapour. A second marked differentiation must thus have arisen; and as the condensation must have taken place on the coolest parts of the surface—namely, about the poles—there must thus have resulted the first geographical distinction of parts. To these illustrations of growing heterogeneity, which, though deduced from known physical laws, may be regarded as more or less hypothetical, Geology adds an extensive series that have been inductively established. Investigations show that the Earth has been continually becoming more heterogeneous in virtue of the multiplication of sedimentary strata which form its crust; also, that it has been becoming more heterogeneous in respect of the composition of these strata, the later of which, being made from the detritus of the earlier, are many of them rendered highly complex by the mixture of materials they contain; and further, that this heterogeneity has been vastly increased by the actions of the Earth's still molten nucleus upon its envelope, whence have resulted not only many kinds of igneous rocks, but the tilting up of sedimentary strata at all angles, the formation of faults and metallic veins, the production of endless dislocations and irregularities. Yet again, geologists teach us that the Earth's surface has been growing more varied in elevation—that the most ancient mountain systems are the smallest, and the Andes and Himalayas the most modern; while in all probability there have been corresponding changes in the bed of the ocean. As a consequence of these ceaseless differentiations, we now find that no considerable portion of the Earth's exposed surface is like any other portion, either in contour, in geologic structure, or in chemical composition; and that in most parts it changes from mile to mile in all these characters. Moreover, there has been simultaneously going on a differentiation of climates. As fast as the Earth cooled and its crust solidified, there arose appreciable differences in temperature between those parts of its surface more exposed to the sun and those less exposed. As the cooling progressed, these differences became more pronounced; until there finally resulted those marked contrasts between regions of perpetual ice and snow, regions where winter and summer alternately reign for periods varying according to the latitude, and regions where summer follows summer with scarcely an appreciable variation. At the same time the many and varied elevations and subsidences of portions of the Earth's crust, bringing about the present irregular distribution of land and sea, have entailed modifications of climate beyond those dependent on latitude; while a yet further series of such modifications have been produced by increasing differences of elevation in the land, which have in sundry places brought arctic, temperate, and tropical climates to within a few miles of one another. And the general outcome of these changes is, that not only has every extensive region its own meteorologic conditions, but that every locality in each region differs more or less from others in those conditions; as in its structure, its contour, its soil. Thus, between our existing Earth, the phenomena of whose crust neither geographers, geologists, mineralogists, nor meteorologists have yet enumerated, and the molten globe out of which it was evolved, the contrast in heterogeneity is extreme.
When from the Earth itself we turn to the plants and animals which have lived, or still live, upon its surface, we find ourselves in some difficulty from lack of facts. That every existing organism has been developed out of the simple into the complex, is indeed the first established truth of all; and that every organism which existed in past times was similarly developed, is an inference no physiologist will hesitate to draw. But when we pass from individual forms of life to Life in general, and inquire whether the same law is seen in the ensemble of its manifestations—whether modern plants and animals are of more heterogeneous structure than ancient ones, and whether the Earth's present Flora and Fauna are more heterogeneous than the Flora and Fauna of the past—we find the evidence so fragmentary, that every conclusion is open to dispute. Three-fifths of the Earth's surface being covered by water; a great part of the exposed land being inaccessible to, or untravelled by, the geologist; the greater part of the remainder having been scarcely more than glanced at; and even the most familiar portions, as England, having been so imperfectly explored that a new series of strata has been added within these four years—it is impossible for us to say with certainty what creatures have, and what have not, existed at any particular period. Considering the perishable nature of many of the lower organic forms, the metamorphosis of numerous sedimentary strata, and the great gaps occurring among the rest, we shall see further reason for distrusting our deductions. On the one hand, the repeated discovery of vertebrate remains in strata previously supposed to contain none—of reptiles where only fish were thought to exist—of mammals where it was believed there were no creatures higher than reptiles—renders it daily more manifest how small is the value of negative evidence. On the other hand, the worthlessness of the assumption that we have discovered the earliest, or anything like the earliest, organic remains, is becoming equally clear. That the oldest known sedimentary rocks have been greatly changed by igneous action, and that still older ones have been totally transformed by it, is becoming undeniable. And the fact that sedimentary strata earlier than any we know, have been melted up, being admitted, it must also be admitted that we cannot say how far back in time this destruction of sedimentary strata has been going on. Thus the title Palæozoic, as applied to the earliest known fossiliferous strata, involves a petitio principii; and, for aught we know to the contrary, only the last few chapters of the Earth's biological history may have come down to us. On neither side, therefore, is the evidence conclusive. Nevertheless we cannot but think that, scanty as they are, the facts, taken altogether, tend to show both that the more heterogeneous organisms have been evolved in the later geologic periods, and that Life in general has been more heterogeneously manifested as time has advanced. Let us cite, in illustration, the one case of the Vertebrata. The earliest known vertebrate remains are those of Fishes; and Fishes are the most homogeneous of the vertebrata. Later and more heterogeneous are Reptiles. Later still, and more heterogeneous still, are Birds and Mammals. If it be said that the Palæozoic deposits, not being estuary deposits, are not likely to contain the remains of terrestrial vertebrata, which may nevertheless have existed at that era, we reply that we are merely pointing to the leading facts, such as they are. But to avoid any such criticism, let us take the mammalian subdivision only. The earliest known remains of mammals are those of small marsupials, which are the lowest of the mammalian type; while,