Название | Great Astronomers |
---|---|
Автор произведения | Robert S. Ball |
Жанр | Документальная литература |
Серия | |
Издательство | Документальная литература |
Год выпуска | 0 |
isbn | 4057664160966 |
Ptolemy was an excellent geometer. He knew that the rising and the setting of the sun, the moon, and the myriad stars, could have been accounted for in a different way. If the earth turned round uniformly once a day while poised at the centre of the sphere of the heavens, all the phenomena of rising and setting could be completely explained. This is, indeed, obvious after a moment's reflection. Consider yourself to be standing on the earth at the centre of the heavens. There are stars over your head, and half the contents of the heavens are visible, while the other half are below your horizon. As the earth turns round, the stars over your head will change, and unless it should happen that you have taken up your position at either of the poles, new stars will pass into your view, and others will disappear, for at no time can you have more than half of the whole sphere visible. The observer on the earth would, therefore, say that some stars were rising, and that some stars were setting. We have, therefore, two totally distinct methods, each of which would completely explain all the observed facts of the diurnal movement. One of these suppositions requires that the celestial sphere, bearing with it the stars and other celestial bodies, turns uniformly around an invisible axis, while the earth remains stationary at the centre. The other supposition would be, that it is the stupendous celestial sphere which remains stationary, while the earth at the centre rotates about the same axis as the celestial sphere did before, but in an opposite direction, and with a uniform velocity which would enable it to complete one turn in twenty-four hours. Ptolemy was mathematician enough to know that either of these suppositions would suffice for the explanation of the observed facts. Indeed, the phenomena of the movements of the stars, so far as he could observe them, could not be called upon to pronounce which of these views was true, and which was false.
Ptolemy had, therefore, to resort for guidance to indirect lines of reasoning. One of these suppositions must be true, and yet it appeared that the adoption of either was accompanied by a great difficulty. It is one of his chief merits to have demonstrated that the celestial sphere was so stupendous that the earth itself was absolutely insignificant in comparison therewith. If, then, this stupendous sphere rotated once in twenty-four hours, the speed with which the movement of some of the stars must be executed would be so portentous as to seem well-nigh impossible. It would, therefore, seem much simpler on this ground to adopt the other alternative, and to suppose the diurnal movements were due to the rotation of the earth. Here Ptolemy saw, or at all events fancied he saw, objections of the weightiest description. The evidence of the senses appeared directly to controvert the supposition that this earth is anything but stationary. Ptolemy might, perhaps, have dismissed this objection on the ground that the testimony of the senses on such a matter should be entirely subordinated to the interpretation which our intelligence would place upon the facts to which the senses deposed. Another objection, however, appeared to him to possess the gravest moment. It was argued that if the earth were rotating, there is nothing to make the air participate in this motion, mankind would therefore be swept from the earth by the furious blasts which would arise from the movement of the earth through an atmosphere at rest. Even if we could imagine that the air were carried round with the earth, the same would not apply, so thought Ptolemy, to any object suspended in the air. So long as a bird was perched on a tree, he might very well be carried onward by the moving earth, but the moment he took wing, the ground would slip from under him at a frightful pace, so that when he dropped down again he would find himself at a distance perhaps ten times as great as that which a carrier-pigeon or a swallow could have traversed in the same time. Some vague delusion of this description seems even still to crop up occasionally. I remember hearing of a proposition for balloon travelling of a very remarkable kind. The voyager who wanted to reach any other place in the same latitude was simply to ascend in a balloon, and wait there till the rotation of the earth conveyed the locality which happened to be his destination directly beneath him, whereupon he was to let out the gas and drop down! Ptolemy knew quite enough natural philosophy to be aware that such a proposal for locomotion would be an utter absurdity; he knew that there was no such relative shift between the air and the earth as this motion would imply. It appeared to him to be necessary that the air should lag behind, if the earth had been animated by a movement of rotation. In this he was, as we know, entirely wrong. There were, however, in his days no accurate notions on the subject of the laws of motion.
Assiduous as Ptolemy may have been in the study of the heavenly bodies, it seems evident that he cannot have devoted much thought to the phenomena of motion of terrestrial objects. Simple, indeed, are the experiments which might have convinced a philosopher much less acute than Ptolemy, that, if the earth did revolve, the air must necessarily accompany it. If a rider galloping on horseback tosses a ball into the air, it drops again into his hand, just as it would have done had he been remaining at rest during the ball's flight; the ball in fact participates in the horizontal motion, so that though it really describes a curve as any passer-by would observe, yet it appears to the rider himself merely to move up and down in a straight line. This fact, and many others similar to it, demonstrate clearly that if the earth were endowed with a movement of rotation, the atmosphere surrounding it must participate in that movement. Ptolemy did not know this, and consequently he came to the conclusion that the earth did not rotate, and that, therefore, notwithstanding the tremendous improbability of so mighty an object as the celestial sphere spinning round once in every twenty-four hours, there was no course open except to believe that this very improbable thing did really happen. Thus it came to pass that Ptolemy adopted as the cardinal doctrine of his system a stationary earth poised at the centre of the celestial sphere, which stretched around on all sides at a distance so vast that the diameter of the earth was an inappreciable point in comparison therewith.
Ptolemy having thus deliberately rejected the doctrine of the earth's rotation, had to make certain other entirely erroneous suppositions. It was easily seen that each star required exactly the same period for the performance of a complete revolution of the heavens. Ptolemy knew that the stars were at enormous distances from the earth, though no doubt his notions on this point came very far short of what we know to be the reality. If the stars had been at very varied distances, then it would be so wildly improbable that they should all accomplish their revolutions in the same time, that Ptolemy came to the conclusion that they must be all at the same distance, that is, that they must be all on the surface of a sphere. This view, however erroneous, was corroborated by the obvious fact that the stars in the constellations preserved their relative places unaltered for centuries. Thus it was that Ptolemy came to the conclusion that they were all fixed on one spherical surface, though we are not informed as to the material of this marvellous setting which sustained the stars like jewels.
Nor should we hastily pronounce this doctrine to be absurd. The stars do appear to lie on the surface of a sphere, of which the observer is at the centre; not only is this the aspect which the skies present to the untechnical observer, but it is the aspect in which the skies are presented to the most experienced astronomer of modern days. No doubt he knows well that the stars are at the most varied distances from him; he knows that certain stars are ten times, or a hundred times, or a thousand times, as far as other stars. Nevertheless, to his eye the stars appear on the surface of the sphere, it is on that surface that his measurements of the relative places of the stars are made; indeed, it may be said that almost all the accurate observations in the observatory relate to the places of the stars, not as they really are, but as they appear to be projected on that celestial sphere whose conception we owe to the genius of Ptolemy.
This great philosopher shows very ingeniously that the earth must be at the centre of the sphere. He proves that, unless this were the case, each star would not appear to move with the absolute uniformity which does, as a matter of fact, characterise it. In all these reasonings we cannot but have the most profound admiration for the genius of Ptolemy, even though he had made an error so enormous in the fundamental point of the stability of the earth. Another error of a somewhat similar kind seemed to Ptolemy to be demonstrated. He had shown that the earth was an isolated object in space, and being such was, of course, capable of movement. It could either be turned round, or it could be moved from one place to another. We know that Ptolemy deliberately adopted the view that the earth did not turn round; he had then to investigate the other