Название | A System of Logic, Ratiocinative and Inductive |
---|---|
Автор произведения | John Stuart Mill |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4064066103569 |
[pg 070]
As has been well remarked by Archbishop Whately and others, the disjunctive form is resolvable into the conditional; every disjunctive proposition being equivalent to two or more conditional ones. “Either A is B or C is D,” means, “if A is not B, C is D; and if C is not D, A is B.” All hypothetical propositions, therefore, though disjunctive in form, are conditional in meaning; and the words hypothetical and conditional may be, as indeed they generally are, used synonymously. Propositions in which the assertion is not dependent on a condition, are said, in the language of logicians, to be categorical.
A hypothetical proposition is not, like the pretended complex propositions which we previously considered, a mere aggregation of simple propositions. The simple propositions which form part of the words in which it is couched, form no part of the assertion which it conveys. When we say, If the Koran comes from God, Mohammed is the prophet of God, we do not intend to affirm either that the Koran does come from God, or that Mohammed is really his prophet. Neither of these simple propositions may be true, and yet the truth of the hypothetical proposition may be indisputable. What is asserted is not the truth of either of the propositions, but the inferribility of the one from the other. What, then, is the subject, and what the predicate of the hypothetical proposition? “The Koran” is not the subject of it, nor is “Mohammed:” for nothing is affirmed or denied either of the Koran or of Mohammed. The real subject of the predication is the entire proposition, “Mohammed is the prophet of God;” and the affirmation is, that this is a legitimate inference from the proposition, “The Koran comes from God.” The subject and predicate, therefore, of a hypothetical proposition are names of propositions. The subject is some one proposition. The predicate is a general relative name applicable to propositions; of this form—“an inference from so and so.” A fresh instance is here afforded of the remark, that particles are abbreviations; since “If A is B, C is D,” is found to be an abbreviation of the following: “The proposition C is D, is a legitimate inference from the proposition A is B.”
The distinction, therefore, between hypothetical and categorical propositions is not so great as it at first appears. In the conditional, as well as in the categorical form, one predicate is affirmed of one subject, and no more: but a conditional proposition is a proposition concerning a proposition; the subject of the assertion is itself an assertion. Nor is this a property peculiar to hypothetical propositions. There are other classes of assertions concerning propositions. Like other things, a proposition has attributes which may be predicated of it. The attribute predicated of it in a hypothetical proposition, is that of being an inference from a certain other proposition. But this is only one of many attributes that might be predicated. We may say, That the whole is greater than its part, is an axiom in mathematics: That the Holy Ghost proceeds from the Father alone, is a tenet of the Greek Church: The doctrine of the divine right of kings was renounced by Parliament at the Revolution: The infallibility of the Pope has no countenance from Scripture. In all these cases the subject of the predication is an entire proposition. That which these different predicates are affirmed of, is the proposition, “the whole is greater than its part;” the proposition, “the Holy Ghost proceeds from the Father alone;” the proposition, “kings have a divine right;” the proposition, “the Pope is infallible.”
Seeing, then, that there is much less difference between hypothetical propositions and any others, than one might be led to imagine from their [pg 071] form, we should be at a loss to account for the conspicuous position which they have been selected to fill in treatises on logic, if we did not remember that what they predicate of a proposition, namely, its being an inference from something else, is precisely that one of its attributes with which most of all a logician is concerned.
§ 4. The next of the common divisions of Propositions is into Universal, Particular, Indefinite, and Singular: a distinction founded on the degree of generality in which the name, which is the subject of the proposition, is to be understood. The following are examples:
All men are mortal—Universal. Some men are mortal—Particular. Man is mortal—Indefinite. Julius Cæsar is mortal—Singular.
The proposition is Singular, when the subject is an individual name. The individual name needs not be a proper name. “The Founder of Christianity was crucified,” is as much a singular proposition as “Christ was crucified.”
When the name which is the subject of the proposition is a general name, we may intend to affirm or deny the predicate, either of all the things that the subject denotes, or only of some. When the predicate is affirmed or denied of all and each of the things denoted by the subject, the proposition is universal; when of some undefined portion of them only, it is particular. Thus, All men are mortal; Every man is mortal; are universal propositions. No man is immortal, is also a universal proposition, since the predicate, immortal, is denied of each and every individual denoted by the term man; the negative proposition being exactly equivalent to the following, Every man is not-immortal. But “some men are wise,” “some men are not wise,” are particular propositions; the predicate wise being in the one case affirmed and in the other denied not of each and every individual denoted by the term man, but only of each and every one of some portion of those individuals, without specifying what portion; for if this were specified, the proposition would be changed either into a singular proposition, or into a universal proposition with a different subject; as, for instance, “all properly instructed men are wise.” There are other forms of particular propositions; as, “Most men are imperfectly educated:” it being immaterial how large a portion of the subject the predicate is asserted of, as long as it is left uncertain how that portion is to be distinguished from the rest.27
When the form of the expression does not clearly show whether the general name which is the subject of the proposition is meant to stand for all the individuals denoted by it, or only for some of them, the proposition is, by some logicians, called Indefinite; but this, as Archbishop Whately observes, [pg 072] is a solecism, of the same nature as that committed by some grammarians when in their list of genders they enumerate the doubtful gender. The speaker must mean to assert the proposition either as a universal or as a particular proposition, though he has failed to declare which: and it often happens that though the words do not show which of the two he intends, the context, or the custom of speech, supplies the deficiency. Thus, when it is affirmed that “Man is mortal,” nobody doubts that the assertion is intended of all human beings; and the word indicative of universality is commonly omitted, only because the meaning is evident without it. In the proposition, “Wine is good,” it is understood with equal readiness, though for somewhat different reasons, that the assertion is not intended to be universal, but particular.28 As is observed by Professor Bain,29 the chief examples of Indefinite propositions occur “with names of material, which are the subjects sometimes of universal, and at other times of particular predication. ‘Food is chemically constituted by carbon, oxygen, etc.,’ is a proposition of universal quantity; the meaning is all food—all kinds of food. ‘Food is necessary to animal life’ is a case of particular quantity; the meaning is some sort of food, not necessarily all sorts. ‘Metal is requisite in order to strength’ does not mean all kinds of metal. ‘Gold will make a way,’ means a portion of gold.”
When a general name stands for each and every individual which it is a name of, or in other words, which it denotes, it is said by logicians to be distributed, or taken distributively. Thus, in the proposition, All men are mortal, the subject, Man, is distributed, because mortality is affirmed of each and every man. The predicate, Mortal, is not distributed, because the only mortals who are spoken of in the proposition are those who happen to be men; while the word may, for aught that appears, and in fact does, comprehend within it an indefinite number of objects besides men. In the proposition, Some men are mortal,