Название | Квантовый ум. Грань между физикой и психологией |
---|---|
Автор произведения | Арнольд Минделл |
Жанр | Философия |
Серия | |
Издательство | Философия |
Год выпуска | 2002 |
isbn | 978-5-93454-147-8 |
Первые математики, которые разрабатывали и использовали мнимые числа в XVII в., полагали, что мнимые числа нереальны и невозможны. Как может отрицательное число иметь квадратный корень? Храбрецом, который первым опубликовал формулу, включавшую в себя таинственные мнимые числа, был итальянский математик XVI в. Джером Кардан. Однако он испытывал большие сомнения в отношении своей работы и называл числа бессмысленными, фиктивными и мнимыми2.
Что же в действительности представляют собой мнимые числа? Вспомните, что действительные числа кодируют, но маргинализируют переживания НОР Многие из конкретных и наблюдаемых свойств вещей, которые мы считаем, не учитываются действием простого счета. Из-за процесса маргинализации, действительных чисел никогда не будет достаточно для полного описания событий, поэтому в математике, наряду с общепринятыми количествами, вроде 1, 2 и 3, нам требуется нечто вроде воображаемых или необщепринятых качеств. Будучи полезными, мнимые числа также указывают назад, на магические качества, которые люди нередко ассоциируют с числами.
Магия чисел
Сегодня, хотя большинство людей мало знают о свойствах чисел, относящихся к необщепринятой реальности, многие до сих пор верят, как и столетия назад, что числа обладают магическими свойствами. Точно так же, как мы используем особые геометрии, чтобы строить здания, например, с высокими остроконечными крышами, а также кресты, звезды и круги, чтобы представлять духовные идеи, древние и некоторые современные люди верили в магическую силу отдельных чисел. Например, считалось, что число 1 представляет единение, многие люди отождествляли число 2 с дьяволом или «двуличным», число 3 с судьбой (или Троицей в христианском мире), число 4 с целостностью и так далее3.
Эти верования отчасти связаны с количественными свойствами чисел. Например, число 1 не становится больше при умножении на само себя и не становится меньше при делении на себя. Вывод: число 1 обладает богоподобными свойствами. Оно является вечным, неизменным. Оно «одно единственное». Я говорил, что число 1 представляет сам процесс, нечто всегда присутствующее, постоянное как неизбежность изменения. Один – это первое простое число.
Простое число не имеет сомножителей, кроме самого себя и единицы. Например, число 6 не является простым, так как оно делится на 2 и 3 (или может быть получено умножением 2 х 3). То есть число 6 имеет сомножители (или делители), отличающиеся от него самого, а именно 2 и 3. Другие простые числа, кроме единицы, – это 2, 3, 5, 7, 11 и так далее и -2, -3, -5 и так далее.
Подумаем о числе 2. Это простое число, поскольку оно может быть разбито только на множители 1 х 2. Число два интересно тем, что оно дает одно и то же число при сложении с собой и умножении на себя, то есть 2 + 2 = 2 х 2 = 4. Легко видеть как можно проецировать на число 2 всевозможные магические или какие-то еще удивительные качества. Другие числа при сложении с собой дают другие результаты, чем при умножении на себя. Но не двойка
2