Deep Learning Approaches to Text Production. Shashi Narayan

Читать онлайн.
Название Deep Learning Approaches to Text Production
Автор произведения Shashi Narayan
Жанр Программы
Серия Synthesis Lectures on Human Language Technologies
Издательство Программы
Год выпуска 0
isbn 9781681738215



Скачать книгу

Learning Frameworks

       3.1Basics

       3.1.1Convolutional Neural Networks

       3.1.2Recurrent Neural Networks

       3.1.3LSTMs and GRUs

       3.1.4Word Embeddings

       3.2The Encoder-Decoder Framework

       3.2.1Learning Input Representations with Bidirectional RNNs

       3.2.2Generating Text Using Recurrent Neural Networks

       3.2.3Training and Decoding with Sequential Generators

       3.3Differences with Pre-Neural Text-Production Approaches

       3.4Summary

       PART IINeural Improvements

       4Generating Better Text

       4.1Attention

       4.2Copy

       4.3Coverage

       4.4Summary

       5Building Better Input Representations

       5.1Pitfalls of Modelling Input as a Sequence of Tokens

       5.1.1Modelling Long Text as a Sequence of Tokens

       5.1.2Modelling Graphs or Trees as a Sequence of Tokens

       5.1.3Limitations of Sequential Representation Learning

       5.2Modelling Text Structures

       5.2.1Modelling Documents with Hierarchical LSTMs

       5.2.2Modelling Document with Ensemble Encoders

       5.2.3Modelling Document With Convolutional Sentence Encoders

       5.3Modelling Graph Structure

       5.3.1Graph-to-Sequence Model for AMR Generation

       5.3.2Graph-Based Triple Encoder for RDF Generation

       5.3.3Graph Convolutional Networks as Graph Encoders

       5.4Summary

       6Modelling Task-Specific Communication Goals

       6.1Task-Specific Knowledge for Content Selection

       6.1.1Selective Encoding to Capture Salient Information

       6.1.2Bottom-Up Copy Attention for Content Selection

       6.1.3Graph-Based Attention for Salient Sentence Detection

       6.1.4Multi-Instance and Multi-Task Learning for Content Selection

       6.2Optimising Task-Specific Evaluation Metric with Reinforcement Learning

       6.2.1The Pitfalls of Cross-Entropy Loss

       6.2.2Text Production as a Reinforcement Learning Problem

       6.2.3Reinforcement Learning Applications

       6.3User Modelling in Neural Conversational Model

       6.4Summary

       PART IIIData Sets and Conclusion

       7Data Sets and Challenges

       7.1Data Sets for Data-to-Text Generation

       7.1.1Generating Biographies from Structured Data

       7.1.2Generating Entity Descriptions from Sets of RDF Triples

       7.1.3Generating Summaries of Sports Games from Box-Score Data

       7.2Data Sets for Meaning Representations to Text Generation

       7.2.1Generating from Abstract Meaning Representations

       7.2.2Generating Sentences from Dependency Trees

       7.2.3Generating from Dialogue Moves

       7.3Data Sets for Text-to-Text Generation

       7.3.1Summarisation

       7.3.2Simplification

       7.3.3Compression

       7.3.4Paraphrasing

       8Conclusion

       8.1Summarising