Название | Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных |
---|---|
Автор произведения | Дэвид Хэнд |
Жанр | Базы данных |
Серия | |
Издательство | Базы данных |
Год выпуска | 2020 |
isbn | 9785961458930 |
Итак, вот три основные стратегии создания наборов данных.
● Сбор данных обо всех интересующих нас объектах.
Именно к этому стремятся, например, во время переписи населения. Точно так же инвентаризации преследуют цель максимально детализировать все позиции на складе или в любом другом месте. В 2018 г. ежегодная инвентаризация в лондонском зоопарке, которая занимает около недели, показала, что в данной организации насчитывается 19 289 животных – от филиппинских крокодилов до беличьих обезьян, пингвинов Гумбольдта и двугорбых верблюдов (в случае муравьев, пчел и других социальных насекомых подсчитывались колонии). В главе 1 мы уже отмечали, что супермаркеты собирают данные обо всех покупках. То же самое касается налогов, операций по кредитным картам и персонала. Не менее подробно регистрируются спортивная статистика, книги на полках библиотек, цены в магазинах и многое другое. Во всех этих примерах каждая единица – будь то объект или человек – детализируется для формирования набора данных.
● Сбор данных о некоторых элементах совокупности.
Альтернативой полной переписи населения является сбор данных в рамках ограниченной выборки. Репрезентативная выборка крайне важна в нашем контексте, и мы подробно рассмотрим ее взаимосвязь с проблемой темных данных. Проще говоря, порой приходится собирать только те данные, которые легче собрать. Чтобы понять, как ведут себя покупатели в принципе, вы можете понаблюдать за теми, кто пришел в магазин сегодня. Для того чтобы узнать, сколько времени у вас отнимает дорога до работы, вы можете просто ежедневно на протяжении месяца следить за продолжительностью поездки. Бывают ситуации, когда просто не нужно измерять все: чтобы увидеть динамику изменения цен на продукты питания, вам не нужна информация о каждой покупке, а для определения среднего веса песчинки ни к чему взвешивать каждую из них. В главе 1 мы уже видели, что само понятие «измерение всего» может быть лишено смысла. Полнота данных, например о вашем росте, будет ограничена только теми измерениями, которые вы проведете.
Несколько лет назад, еще до начала эры легкодоступных больших наборов данных, мы с коллегами опубликовали «Справочник по небольшим наборам данных»[12], включающий в себя 510 массивов реальных данных, на примере которых преподаватели могут иллюстрировать концепции и методы статистики. В справочнике приведены результаты 20 000 бросков игральной кости, данные о сроках беременности, толщине роговицы глаза, длительности нервных импульсов и множество других наборов данных, очень немногие из которых описывают генеральные совокупности целиком.
● Изменение условий.
Первые две стратегии помогают собрать так называемые данные наблюдения. Вы просто измеряете значения, которые присущи объектам или людям, никак не меняя условия, в которых проводятся измерения. Вы не даете людям лекарств, чтобы отследить их реакцию, не просите выполнить какое-либо задание, чтобы подсчитать, сколько времени это займет, не меняете удобрения, чтобы
12
D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway, and E. Ostrowski, A Handbook of Small Data Sets (London: Chapman and Hall, 1994).