Aristotle: The Complete Works. Aristotle

Читать онлайн.
Название Aristotle: The Complete Works
Автор произведения Aristotle
Жанр Философия
Серия
Издательство Философия
Год выпуска 0
isbn 9782380373165



Скачать книгу

the contradictory which is opposed to this). Further, it is clear also from an example that the conclusion will not establish possibility. Let A be ‘raven’, B ‘intelligent’, and C ‘man’. A then belongs to no B: for no intelligent thing is a raven. But B is possible for all C: for every man may possibly be intelligent. But A necessarily belongs to no C: so the conclusion does not establish possibility. But neither is it always necessary. Let A be ‘moving’, B ‘science’, C ‘man’. A then will belong to no B; but B is possible for all C. And the conclusion will not be necessary. For it is not necessary that no man should move; rather it is not necessary that any man should move. Clearly then the conclusion establishes that one term does not necessarily belong to any instance of another term. But we must take our terms better.

      If the minor premiss is negative and indicates possibility, from the actual premisses taken there can be no syllogism, but if the problematic premiss is converted, a syllogism will be possible, as before. Let A belong to all B, and let B possibly belong to no C. If the terms are arranged thus, nothing necessarily follows: but if the proposition BC is converted and it is assumed that B is possible for all C, a syllogism results as before: for the terms are in the same relative positions. Likewise if both the relations are negative, if the major premiss states that A does not belong to B, and the minor premiss indicates that B may possibly belong to no C. Through the premisses actually taken nothing necessary results in any way; but if the problematic premiss is converted, we shall have a syllogism. Suppose that A belongs to no B, and B may possibly belong to no C. Through these comes nothing necessary. But if B is assumed to be possible for all C (and this is true) and if the premiss AB remains as before, we shall again have the same syllogism. But if it be assumed that B does not belong to any C, instead of possibly not belonging, there cannot be a syllogism anyhow, whether the premiss AB is negative or affirmative. As common instances of a necessary and positive relation we may take the terms white-animal-snow: of a necessary and negative relation, white-animal-pitch. Clearly then if the terms are universal, and one of the premisses is assertoric, the other problematic, whenever the minor premiss is problematic a syllogism always results, only sometimes it results from the premisses that are taken, sometimes it requires the conversion of one premiss. We have stated when each of these happens and the reason why. But if one of the relations is universal, the other particular, then whenever the major premiss is universal and problematic, whether affirmative or negative, and the particular is affirmative and assertoric, there will be a perfect syllogism, just as when the terms are universal. The demonstration is the same as before. But whenever the major premiss is universal, but assertoric, not problematic, and the minor is particular and problematic, whether both premisses are negative or affirmative, or one is negative, the other affirmative, in all cases there will be an imperfect syllogism. Only some of them will be proved per impossibile, others by the conversion of the problematic premiss, as has been shown above. And a syllogism will be possible by means of conversion when the major premiss is universal and assertoric, whether positive or negative, and the minor particular, negative, and problematic, e.g. if A belongs to all B or to no B, and B may possibly not belong to some C. For if the premiss BC is converted in respect of possibility, a syllogism results. But whenever the particular premiss is assertoric and negative, there cannot be a syllogism. As instances of the positive relation we may take the terms white-animal-snow; of the negative, white-animal-pitch. For the demonstration must be made through the indefinite nature of the particular premiss. But if the minor premiss is universal, and the major particular, whether either premiss is negative or affirmative, problematic or assertoric, nohow is a syllogism possible. Nor is a syllogism possible when the premisses are particular or indefinite, whether problematic or assertoric, or the one problematic, the other assertoric. The demonstration is the same as above. As instances of the necessary and positive relation we may take the terms animal-white-man; of the necessary and negative relation, animal-white-garment. It is evident then that if the major premiss is universal, a syllogism always results, but if the minor is universal nothing at all can ever be proved.

      Whenever one premiss is necessary, the other problematic, there will be a syllogism when the terms are related as before; and a perfect syllogism when the minor premiss is necessary. If the premisses are affirmative the conclusion will be problematic, not assertoric, whether the premisses are universal or not: but if one is affirmative, the other negative, when the affirmative is necessary the conclusion will be problematic, not negative assertoric; but when the negative is necessary the conclusion will be problematic negative, and assertoric negative, whether the premisses are universal or not. Possibility in the conclusion must be understood in the same manner as before. There cannot be an inference to the necessary negative proposition: for ‘not necessarily to belong’ is different from ‘necessarily not to belong’.

      If the premisses are affirmative, clearly the conclusion which follows is not necessary. Suppose A necessarily belongs to all B, and let B be possible for all C. We shall have an imperfect syllogism to prove that A may belong to all C. That it is imperfect is clear from the proof: for it will be proved in the same manner as above. Again, let A be possible for all B, and let B necessarily belong to all C. We shall then have a syllogism to prove that A may belong to all C, not that A does belong to all C: and it is perfect, not imperfect: for it is completed directly through the original premisses.

      But if the premisses are not similar in quality, suppose first that the negative premiss is necessary, and let necessarily A not be possible for any B, but let B be possible for all C. It is necessary then that A belongs to no C. For suppose A to belong to all C or to some C. Now we assumed that A is not possible for any B. Since then the negative proposition is convertible, B is not possible for any A. But A is supposed to belong to all C or to some C. Consequently B will not be possible for any C or for all C. But it was originally laid down that B is possible for all C. And it is clear that the possibility of belonging can be inferred, since the fact of not belonging is inferred. Again, let the affirmative premiss be necessary, and let A possibly not belong to any B, and let B necessarily belong to all C. The syllogism will be perfect, but it will establish a problematic negative, not an assertoric negative. For the major premiss was problematic, and further it is not possible to prove the assertoric conclusion per impossibile. For if it were supposed that A belongs to some C, and it is laid down that A possibly does not belong to any B, no impossible relation between B and C follows from these premisses. But if the minor premiss is negative, when it is problematic a syllogism is possible by conversion, as above; but when it is necessary no syllogism can be formed. Nor again when both premisses are negative, and the minor is necessary. The same terms as before serve both for the positive relation-white-animal-snow, and for the negative relation-white-animal-pitch.

      The same relation will obtain in particular syllogisms. Whenever the negative proposition is necessary, the conclusion will be negative assertoric: e.g. if it is not possible that A should belong to any B, but B may belong to some of the Cs, it is necessary that A should not belong to some of the Cs. For if A belongs to all C, but cannot belong to any B, neither can B belong to any A. So if A belongs to all C, to none of the Cs can B belong. But it was laid down that B may belong to some C. But when the particular affirmative in the negative syllogism, e.g. BC the minor premiss, or the universal proposition in the affirmative syllogism, e.g. AB the major premiss, is necessary, there will not be an assertoric conclusion. The demonstration is the same as before. But if the minor premiss is universal, and problematic, whether affirmative or negative, and the major premiss is particular and necessary, there cannot be a syllogism. Premisses of this kind are possible both where the relation is positive and necessary, e.g. animal-white-man, and where it is necessary and negative, e.g. animal-white-garment. But when the universal is necessary, the particular problematic, if the universal is negative we may take the terms animal-white-raven to illustrate the positive relation, or animal-white-pitch to illustrate the negative; and if the universal is affirmative we may take the terms animal-white-swan to illustrate the positive relation, and animal-white-snow to illustrate the negative and necessary relation. Nor again is a syllogism possible when the premisses are indefinite, or both particular. Terms applicable in either case to illustrate the positive relation are animal-white-man: to illustrate the negative, animal-white-inanimate. For the relation of animal to some white, and of white to some inanimate, is both necessary and positive and necessary and negative. Similarly if the relation