Название | Aristotle: The Complete Works |
---|---|
Автор произведения | Aristotle |
Жанр | Философия |
Серия | |
Издательство | Философия |
Год выпуска | 0 |
isbn | 9782380373165 |
Since everything that is in motion must be moved by something, let us take the case in which a thing is in locomotion and is moved by something that is itself in motion, and that again is moved by something else that is in motion, and that by something else, and so on continually: then the series cannot go on to infinity, but there must be some first movent. For let us suppose that this is not so and take the series to be infinite. Let A then be moved by B, B by G, G by D, and so on, each member of the series being moved by that which comes next to it. Then since ex hypothesi the movent while causing motion is also itself in motion, and the motion of the moved and the motion of the movent must proceed simultaneously (for the movent is causing motion and the moved is being moved simultaneously) it is evident that the respective motions of A, B, G, and each of the other moved movents are simultaneous. Let us take the motion of each separately and let E be the motion of A, Z of B, and H and O respectively the motions of G and D: for though they are all moved severally one by another, yet we may still take the motion of each as numerically one, since every motion is from something to something and is not infinite in respect of its extreme points. By a motion that is numerically one I mean a motion that proceeds from something numerically one and the same to something numerically one and the same in a period of time numerically one and the same: for a motion may be the same generically, specifically, or numerically: it is generically the same if it belongs to the same category, e.g. substance or quality: it is specifically the same if it proceeds from something specifically the same to something specifically the same, e.g. from white to black or from good to bad, which is not of a kind specifically distinct: it is numerically the same if it proceeds from something numerically one to something numerically one in the same period of time, e.g. from a particular white to a particular black, or from a particular place to a particular place, in a particular period of time: for if the period of time were not one and the same, the motion would no longer be numerically one though it would still be specifically one.
We have dealt with this question above. Now let us further take the time in which A has completed its motion, and let it be represented by K. Then since the motion of A is finite the time will also be finite. But since the movents and the things moved are infinite, the motion EZHO, i.e. the motion that is composed of all the individual motions, must be infinite. For the motions of A, B, and the others may be equal, or the motions of the others may be greater: but assuming what is conceivable, we find that whether they are equal or some are greater, in both cases the whole motion is infinite. And since the motion of A and that of each of the others are simultaneous, the whole motion must occupy the same time as the motion of A: but the time occupied by the motion of A is finite: consequently the motion will be infinite in a finite time, which is impossible.
It might be thought that what we set out to prove has thus been shown, but our argument so far does not prove it, because it does not yet prove that anything impossible results from the contrary supposition: for in a finite time there may be an infinite motion, though not of one thing, but of many: and in the case that we are considering this is so: for each thing accomplishes its own motion, and there is no impossibility in many things being in motion simultaneously. But if (as we see to be universally the case) that which primarily is moved locally and corporeally must be either in contact with or continuous with that which moves it, the things moved and the movents must be continuous or in contact with one another, so that together they all form a single unity: whether this unity is finite or infinite makes no difference to our present argument; for in any case since the things in motion are infinite in number the whole motion will be infinite, if, as is theoretically possible, each motion is either equal to or greater than that which follows it in the series: for we shall take as actual that which is theoretically possible. If, then, A, B, G, D form an infinite magnitude that passes through the motion EZHO in the finite time K, this involves the conclusion that an infinite motion is passed through in a finite time: and whether the magnitude in question is finite or infinite this is in either case impossible. Therefore the series must come to an end, and there must be a first movent and a first moved: for the fact that this impossibility results only from the assumption of a particular case is immaterial, since the case assumed is theoretically possible, and the assumption of a theoretically possible case ought not to give rise to any impossible result.
<
div id="section58" class="section" title="2">
2
That which is the first movement of a thing-in the sense that it supplies not ‘that for the sake of which’ but the source of the motion-is always together with that which is moved by it by ‘together’ I mean that there is nothing intermediate between them). This is universally true wherever one thing is moved by another. And since there are three kinds of motion, local, qualitative, and quantitative, there must also be three kinds of movent, that which causes locomotion, that which causes alteration, and that which causes increase or decrease.
Let us begin with locomotion, for this is the primary motion. Everything that is in locomotion is moved either by itself or by something else. In the case of things that are moved by themselves it is evident that the moved and the movent are together: for they contain within themselves their first movent, so that there is nothing in between. The motion of things that are moved by something else must proceed in one of four ways: for there are four kinds of locomotion caused by something other than that which is in motion, viz. pulling, pushing, carrying, and twirling. All forms of locomotion are reducible to these. Thus pushing on is a form of pushing in which that which is causing motion away from itself follows up that which it pushes and continues to push it: pushing off occurs when the movent does not follow up the thing that it has moved: throwing when the movent causes a motion away from itself more violent than the natural locomotion of the thing moved, which continues its course so long as it is controlled by the motion imparted to it. Again, pushing apart and pushing together are forms respectively of pushing off and pulling: pushing apart is pushing off, which may be a motion either away from the pusher or away from something else, while pushing together is pulling, which may be a motion towards something else as well as the puller. We may similarly classify all the varieties of these last two, e.g. packing and combing: the former is a form of pushing together, the latter a form of pushing apart. The same is true of the other processes of combination and separation (they will all be found to be forms of pushing apart or of pushing together), except such as are involved in the processes of becoming and perishing. (At same time it is evident that there is no other kind of motion but combination and separation: for they may all be apportioned to one or other of those already mentioned.) Again, inhaling is a form of pulling, exhaling a form of pushing: and the same is true of spitting and of all other motions that proceed through the body, whether secretive or assimilative, the assimilative being forms of pulling, the secretive of pushing off. All other kinds of locomotion must be similarly reduced, for they all fall under one or other of our four heads. And again, of these four, carrying and twirling are to pulling and pushing. For carrying always follows one of the other three methods, for that which is carried is in motion accidentally, because it is in or upon something that is in motion, and that which carries it is in doing so being either pulled or pushed or twirled; thus carrying belongs to all the other three kinds of motion in common. And twirling is a compound of pulling and pushing, for that which is twirling a thing must be pulling one part of the thing and pushing another part, since it impels one part away from itself