Название | Trigonometría y geometría analítica |
---|---|
Автор произведения | Gonzalo Masjuán |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9789561425989 |
Pythágoras fue a refugiarse en Tarento, donde languideció y murió oscuramente.
La proposición E.I.47 es conocida en todo el mundo y a través de todas las épocas como el Teorema de Pythágoras por excelencia. Se cree que este sabio y su Escuela hayan conseguido el enunciado clásico:
“En un triángulo rectángulo la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa”.
Sin embargo, no hay al respecto una prueba histórica concluyente de tal descubrimiento, tampoco de que el teorema haya sido debidamente demostrado antes de Euclides (el nombre griego original es Eυ’κλEι′δηζ ).
El testimonio de DIOGENES LAERCIO (historiador griego que vivió entre los siglos II y III d.C.) en su obra “Vidas, opiniones y sentencias de los filósofos más ilustres, en diez libros” descansa en APOLODORO, apodado el computista, con la consabida inmolación de una hecatombe (cien bueyes) en acción de gracias a los dioses... Nada se nos dice, en cambio, acerca de si los pitagóricos demostraron correctamente el teorema (es posible que hubieran tomado en cuenta la situación presentada en la figura 1).
Fig. 1
Bastante más prudente y acertada parece la consideración que de este histórico acontecimiento matemático hace PROCLO (historiador griego que vivió en el siglo V d.C.) en su obra “Comentarios al primer libro de los elementos de Euclides”:
“Si hacemos caso de quienes gustan relatar la historia antigua, encontraremos a algunos de ellos refiriendo este teorema de Pythágoras y diciendo que él sacrificó un buey (no habla de hecatombes) en honor de su descubrimiento. Pero, por mi parte, admiro a aquellos que primero observaron la verdad de este teorema (el oriente antiguo). Y más me maravilla el autor de los Elementos no sólo porque lo valorizó con una lúcida demostración, sino además porque llevó a considerar el teorema aún más general (E.VI.31) por irrefutables argumentos científicos en el libro sexto”.
Por lo demás, es claro que no debemos olvidar los importantes aportes que hicieron en los inicios de la Trigonometría tanto los babilonios, egipcios, griegos, indios y árabes.
Avanzando en la Historia, para resumir, tenemos que en el siglo XV d.C. John Muller, conocido como Regiomontano, escribe un tratado completo de trigonometría, llamado “Tratado del triángulo”. Con posterioridad los astrónomos Tycho Brae, Nicolás Copérnico y el geómetra Fran¸cois Vi`ete desarrollaron la trigonometría prácticamente hasta el estado actual, aunque a comienzos del siglo XVII Bartolomé Pitiscus, profesor de la Universidad de Heidelberg, escribió el primer texto que llevó el título de “Trigonometría” y la idea del autor era exactamente exponer lo que el nombre implica: medición de triángulos. Faltaría nombrar a Werner, quien encontró las “fórmulas de prostaféresis”, éstas son las identidades conocidas sobre las sumas y diferencias de senos y cosenos.
1.2Razones trigonométricas
En la figura 1.1 se considera un determinado ángulo PAQ de medida α -por comodidad no haremos distingo entre ángulo y su medida- y se ha trazado, al arbitrio, la perpendicular
Fig. 1.1
Definición 1.2.1 Tomando en cuenta la figura 1.1, se llama:
(1)coseno del ángulo α al número:
(2)seno del ángulo α al número:
(3)tangente del ángulo α al número:
(4)cotangente del ángulo α al número:
(5)secante del ángulo α al número:
(6)cosecante del ángulo α al número:
A cada uno de estos números se le denomina razón trigonométrica del ángulo α.
Nota:
Hacemos notar que estos números llamados razones trigonométricas del ángulo α sólo dependen de α. Esto se debe a que son independientes de la perpendicular
Teorema 1.2.1 Se tienen las siguientes identidades fundamentales:
Nota:
Como se sabe, el complemento de un ángulo es aquel ángulo que junto con α completan 90◦ (
o