(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард Млодинов

Читать онлайн.
Название (Не)совершенная случайность. Как случай управляет нашей жизнью
Автор произведения Леонард Млодинов
Жанр Математика
Серия
Издательство Математика
Год выпуска 2008
isbn 978-5-904584-56-6



Скачать книгу

вероятность того, что оба младенца родятся девочками, при условии, что первый ребенок – девочка, мы исключили бы из пространства элементарных событий и пару (мальчик, мальчик), и пару (мальчик, девочка), а вероятность равнялась бы 1 из 2, то есть 50 %.

      Надо отдать должное Мэрилин вос Савант – она не только предприняла попытку привить широкой общественности элементарные знания о теории вероятностей, но и продолжила публиковать подобные вопросы, несмотря на непростой опыт с задачей Монти Холла. Напоследок рассмотрим еще один вопрос из ее колонки, на этот раз датированный мартом 1996 г.:

      «Мой отец услышал это по радио. В Университете Дьюка двое студентов в течение всего семестра получали по химии высшие баллы. Но вечером перед выпускным тестом они были на вечеринке в другом штате, а вернулись только на следующий день, когда экзамен уже закончился. В качестве оправдания они рассказали профессору про лопнувшую шину и попросили разрешения все же написать тест. Профессор согласился, составил для них вопросы и рассадил обоих студентов по разным аудиториям. За правильный ответ на первый вопрос (на одной стороне листа) давалось 5 баллов. Студенты перевернули листы и обнаружили на оборотной стороне вопрос, за правильный ответ на который давалось 95 баллов. Вот он: «На котором из колес лопнула шина?» Какова вероятность того, что оба студента ответят одинаково? Мы с отцом решили, что 1 из 16. Верно[68]

      Нет, не верно. Если студенты солгали, вероятность того, что они напишут один и тот же ответ, равна 1 из 4 (если вам непонятно, почему это так, загляните в примечания в конце книги[69]). А вот теперь, когда мы уже привыкли к тому, чтобы разбирать задачу, составляя список возможных исходов, можно воспользоваться законом пространства элементарных событий и решить задачу Монти Холла.

      Как я уже говорил, чтобы решить задачу Монти Холла, не нужно обладать особыми познаниями в математике. Однако необходимо некоторое умение мыслить логически, так что если вы одним глазом читаете эти строки, а другим смотрите повтор «Симпсонов», вам наверняка придется сосредоточиться на чем-то одном. Не переживайте, много времени это не займет – всего несколько страниц.

      В задаче Монти Холла фигурируют три двери: за одной нечто ценное, скажем, шикарная красная «мазерати», за двумя другими – нечто гораздо менее интересное, скажем, полное собрание сочинений Шекспира на сербском. Вы выбрали дверь 1. В таком случае пространство элементарных событий представлено следующими тремя возможными исходами:

      ♦ «Мазерати» за дверью 1.

      ♦ «Мазерати» за дверью 2.

      ♦ «Мазерати» за дверью 3.

      Вероятность каждого исхода – 1 из 3. Поскольку предполагается, что большинство все-таки выберет «мазерати», первый исход будем считать выигрышным, а шансы угадать равны 1 из 3.

      Далее по сценарию ведущий, заведомо знающий, что находится за каждой из дверей, открывает одну дверь из не выбранных вами,



<p>68</p>

Marilyn vos Savant, “Ask Marilyn”, Parade, March 3, 1996, p. 14.

<p>69</p>

У машины четыре колеса, и если буквами ПП обозначить правое переднее колесо, ну и так далее, получится 16 возможных комбинаций ответов студентов. Если первый ответ из списка означает ответ студента № 1, а второй – ответ студента № 2, получатся следующие возможные совместные ответы: (ПП, ПП), (ПП, ЛП), (ПП, ПЗ), (ПП, ЛЗ), (ЛП, ПП), (ЛП, ЛП), (ЛП, ПЗ), (ЛП, ЛЗ), (ПЗ, ПП), (ПЗ, ЛП), (ПЗ, ПЗ), (ПЗ, ЛЗ), (ЛЗ, ПП), (ЛЗ, ЛП), (ЛЗ, ПЗ), (ЛЗ, ЛЗ). Из этих 16 комбинаций 4 совпадают: (ПП, ПП), (ЛП, ЛП), (ПЗ, ПЗ), (ЛЗ, ЛЗ). Таким образом, шансы равны 4 из 16, или 1 из 4.