Название | Искусство статистики. Как находить ответы в данных |
---|---|
Автор произведения | Дэвид Шпигельхалтер |
Жанр | Базы данных |
Серия | МИФ Научпоп |
Издательство | Базы данных |
Год выпуска | 2019 |
isbn | 9785001692508 |
• Непрерывные переменные: могут принимать любые значения. Например, некоторые вещи теоретически можно измерять с любой точностью и получать любые числа. Скажем, вес и рост, которые отличаются как у разных людей, так и у одного человека в зависимости от времени. Разумеется, эти значения можно округлить до целого числа сантиметров или килограммов[42].
Когда набор наблюдений (выборка) сводится к одному числу, мы, как правило, называем его средним значением. Все знакомы с понятием средней зарплаты, средней оценки на экзамене или средней температуры, но часто не знают, как интерпретировать эти величины (особенно если человек, который о них говорит, сам не понимает, о чем речь).
Чаще всего встречаются три толкования термина «среднее значение»:
1. Среднее арифметическое (или выборочное среднее): сумма всех величин, деленная на их количество.
2. Медиана: среднее по величине число ранжированного ряда (то есть слева и справа от него будет поровну чисел)[43]. Именно так Гальтон считал голоса толпы[44].
3. Мода: чаще всего встречающееся значение в выборке.
Эти параметры также называются показателями положения центра распределения.
Интерпретация термина «среднее» как «среднее арифметическое» дает повод для старых шуток о том, что почти у всех людей число ног превышает среднее (которое, по оценкам, примерно равно 1,99999) и что у человека в среднем одно яичко. Однако среднее арифметическое может не подходить не только при измерении ног и яичек. Вычисленное таким образом среднее число сексуальных партнеров или средний доход по стране может иметь крайне мало общего с представлением большинства людей из-за сильного влияния больших значений в выборке, которые тянут среднее арифметическое вверх[45]: подумайте об Уоррене Битти или Билле Гейтсе (в отношении числа сексуальных партнеров и дохода соответственно).
Средние значения способны сильно вводить в заблуждение, когда исходные данные имеют не симметричное распределение, а сильно перекошенное в какую-либо сторону (как при догадках о количестве драже). Как правило, так происходит при наличии большой группы стандартных случаев и хвоста из нескольких высоких (скажем, величина дохода) или низких (число ног) значений. Я могу практически гарантированно утверждать, что вы гораздо меньше рискуете умереть в следующем году по сравнению с людьми вашего возраста и пола (если средний риск вычислять как среднее арифметическое). Например, согласно таблицам смертности для Соединенного Королевства, 1 % 63-летних мужчин не доживают до 64-летия. Однако многие из тех, кто умрет, уже серьезно больны, а потому риск для подавляющего большинства (тех, кто относительно здоров) меньше, чем средний.
К сожалению, когда в СМИ пишут о среднем, часто непонятно, следует это толковать
42
Вообще говоря, непрерывным переменным противопоставляются дискретные, которые необязательно принимают неотрицательные целые значения, а могут принимать значения в произвольном конечном или счетном множестве.
43
Это определение удобно для нечетного количества элементов в выборке. Если число элементов четное, то обычно медианой считают полусумму двух средних элементов ряда.
44
Хотя в 1907 году в Nature оспаривали выбор Гальтоном медианы, считая, что среднее арифметическое дало бы лучшую оценку.
45
Представьте, что в комнате сидят три человека, которые зарабатывают 400, 500 и 600 фунтов в неделю. В таком случае выборочное среднее для их зарплат составляет 1500 / 3 = 500 фунтов. Медианное значение тоже 500 фунтов. Затем в комнату заходят два человека, зарабатывающие по 5000 фунтов, и выборочное среднее взлетает до 11 500 / 5 = 2300 фунтов, в то время как медиана поднялась только до 600.