Machine Learning for Time Series Forecasting with Python. Francesca Lazzeri

Читать онлайн.
Название Machine Learning for Time Series Forecasting with Python
Автор произведения Francesca Lazzeri
Жанр Базы данных
Серия
Издательство Базы данных
Год выпуска 0
isbn 9781119682387



Скачать книгу

href="#ulink_2ad0df55-354c-5978-90c4-ff07345665b9">Figure 1.9: Multivariate time series as supervised learning problemFigure 1.10: Univariate time series as multi-step supervised learning

      2 Chapter 2Figure 2.1: Time series forecasting templateFigure 2.2: Time series batch data processing architectureFigure 2.3: Real-time and streaming data processing architectureFigure 2.4: Understanding time series featuresFigure 2.5: A representation of data set splitsFigure 2.6: Machine learning model workflowFigure 2.7: Energy demand forecast end-to-end solution

      3 Chapter 3Figure 3.1: Overview of Python libraries for time series dataFigure 3.2: Time series decomposition plot for the load data set (time range...Figure 3.3: Time series load value and trend decomposition plot

      4 Chapter 4Figure 4.1: First order autoregression approachFigure 4.2: Second order autoregression approachFigure 4.3: Lag plot results from ts_data_load setFigure 4.4: Autocorrelation plot results from ts_data_load setFigure 4.5: Autocorrelation plot results from ts_data_load_subsetFigure 4.6: Autocorrelation plot results from ts_data_load set with plot_acf ...Figure 4.7: Autocorrelation plot results from ts_data_load_subset with plot_...Figure 4.8: Autocorrelation plot results from ts_data set with plot_pacf() f...Figure 4.9: Autocorrelation plot results from ts_data_load_subset with plot_...Figure 4.10: Forecast plot generated from ts_data set with plot_predict() fu...Figure 4.11: Visualizations generated from ts_data set with plot_diagnositcs...

      5 Chapter 5Figure 5.1: Representation of a recurrent neural network unitFigure 5.2: Recurrent neural network architectureFigure 5.3: Back propagation process in recurrent neural networks to compute...Figure 5.4: Backpropagation process in recurrent neural networks to compute ...Figure 5.5: Transforming time series data into two tensorsFigure 5.6: Transforming time series data into two tensors for a univariate ...Figure 5.7: Ts_data_load train, validation, and test data sets plotFigure 5.8: Data preparation steps for the ts_data_load train data setFigure 5.9: Development of deep learning models in KerasFigure 5.10: Structure of a simple RNN model to be implemented with KerasFigure 5.11: Structure of a simple RNN model to be implemented with KerasFigure 5.12: Structure of a simple RNN model to be implemented with Keras fo...

      6 Chapter 6Figure 6.1: The machine learning model workflowFigure 6.2: The modeling and scoring processFigure 6.3: First few rows of the energy data setFigure 6.4: Load data set plotFigure 6.5: Load data set plot of the first week of July 2014Figure 6.6: Web service deployment and consumptionFigure 6.7: Energy demand forecast end-to-end data flow

      Guide

      1  Cover Page

      2  Table of Contents

      3  Begin Reading

      Pages

      1  i

      2  xv

      3  xvi

      4 xvii

      5  xviii

      6  1

      7 2

      8 3

      9  4

      10  5

      11  6

      12 7

      13  8

      14 9

      15 10

      16 11

      17 12

      18 13

      19 14

      20 15

      21 16

      22 17

      23 18

      24  19

      25  20

      26  21

      27  22

      28 23

      29 24

      30 25

      31 26

      32 27

      33  29

      34 30

      35 31

      36 32

      37 33

      38  34

      39 35

      40 36

      41 37

      42 38

      43  39

      44  40

      45  41

      46 42

      47  43

      48  44

      49 45

      50  46

      51  47

      52 48

      53  49

      54  50

      55 51

      56  52

      57  53

      58  54

      59  55

      60  56

      61  57

      62  58

      63 59

      64  61

      65 62

      66  63

      67  64

      68  65

      69  66

      70  67

      71  68

      72  69

      73  70

      74