Название | Analysis and Control of Electric Drives |
---|---|
Автор произведения | Ned Mohan |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119584551 |
5 Chapter 5Fig. 5-1 Feedback‐controlled drive.Fig. 5-2 Exploded view of a dc motorFig. 5-3 dc motor equivalent circuit.Fig. 5-4 (a) Torque‐speed characteristics and (b) Va versus ωm.Fig. 5-5 Simplified control system representation.Fig. 5-6 (a) Phase margin and (b) bandwidth.Fig. 5-7 (a) Gain magnitude of a first‐order system open loop, (b) the gain ...Fig. 5-8 Cascade control of a motor drive.Fig. 5-9 (a) Switch‐mode converter for motor drives, (b) average model of th...Fig. 5-10 dc motor and mechanical load: (a) equivalent circuit and (b) block...Fig. 5-11 PI controller.Fig. 5-12 Design of the torque control loop.Fig. 5-13 Frequency response of the current loop: (a) open loop and (b) clos...Fig. 5-14 Block diagram of the speed loop.Fig. 5-15 Speed loop response: (a) open loop and (b) closed loop.Fig. 5-16 Block diagram of position loop.Fig. 5-17 Position loop response: (a) open‐loop and (b) closed loop.Fig. 5-18 Control system with feed‐forward.Fig. 5-19 (a) Limits on the PI controller and (b) PI with anti‐windup.Fig. 5-20 Real‐time dc motor speed control.Fig. 5-21 Hardware speed control.Fig. P5-12 Speed controller.
6 Chapter 6Fig. 6-1 Magnetic axes of the three phases in a 2‐pole machine.Fig. 6-2 Sinusoidally distributed winding for phase‐a.Fig. 6-3 Calculation of air gap field distribution.Fig. 6-4 Developed view of the field distribution in the air gap.Fig. 6-5 Paths corresponding to Example 6-1.Fig. 6-6 Phase a of a 4‐pole machine.Fig. 6-7 Three‐phase windings.Fig. 6-8 Waveforms of flux density.Fig. 6-9 Representation of MMF space vector in a machine.Fig. 6-10 (a) Resultant flux‐density space vector and (b) flux‐density distr...Fig. 6-11 (a) Phase voltages and currents and (b) physical interpretation of...Fig. 6-12 (a) Stator current space vector and (b) the equivalent winding.Fig. 6-13 Phase components of a space vector.Fig. 6-14 (a) Windings, (b) magnetizing currents, and (c) rotating mmf space...Fig. 6-15 Example 6-7.Fig. 6-16 Relationship between space vectors and phasors in balanced sinusoi...Fig. 6-17 Winding current and induced emf: (a) individual windings, (b) phas...Fig. 6-18 Example 6.8.
7 Chapter 7Fig. 7-1 Switch‐mode inverter.Fig. 7-2 Basic voltage vectors (
and not shown).Fig. 7-3 Voltage vector in Sector 1.Fig. 7-4 Waveforms in Sector 1; z = z0 +z7.Fig. 7-5 Simulation of Example 7-1.Fig. 7-6 Simulation results of Example 7-1.Fig. 7-7 Limit on amplitude Fig. 7-8 Real‐time three‐phase inverter (a) Sine‐PWM and (b) SV‐PWM.8 Chapter 8Fig. 8-1 Characteristics of various permanent‐magnet materials.Fig. 8-2 Block diagram of the closed‐loop operation of a PMAC drive.Fig. 8-3 Two‐pole PMAC machine.Fig. 8-4 The stator current and the rotor field space vectors in PMAC drives...Fig. 8-5 Torque calculation on the stator.Fig. 8-6 Similarities between (a) dc motor and (b) PMAC motor drives.Fig. 8-7 Rotor‐load mechanical system.Fig. 8-8 Stator‐current space vector for Example 8-1.Fig. 8-9 (a) Induced emf due to rotating rotor flux‐density space vector and...Fig. 8-10 (a) Space vector diagram of induced emfs and (b) phasor diagram fo...Fig. 8-11 (a) Per‐phase equivalent circuit and (b) simplified equivalent cir...Fig. 8-12 (a) Block diagram representation of hysteresis current control and...Fig. 8-13 Real‐time PMAC motor hysteresis current control.Fig. 8-14 Hardware speed result.Fig. 8-15 Three phase stator current.
9 Chapter 9Fig. 9-1 (a) Three‐phase stator winding axes and (b) squirrel‐cage rotor.Fig. 9-2 Balanced three‐phase sinusoidal voltages applied to the stator, rot...Fig. 9-3 Space vector representations at time t = 0, (b) voltage and current...Fig. 9-4 (a) Two winding transformer and (b) equivalent circuit of the two w...Fig. 9-5 (a) Induced voltages in the rotor bar and (b) motion of the rotor b...Fig. 9-6 (a) Polarities of voltages induced and (b) electrical equivalent ci...Fig. 9-7 (a) Rotor‐produced flux
and the flux , and (b) space vector diag...Fig. 9-8 Rotor‐produced mmf and the compensating mmf at time t = t1.Fig. 9-9 Example 9-2.Fig. 9-10 Voltage induced in bar “p” at (a) t = 0 and (b) t = t1.Fig. 9-11 Calculation of electromagnetic torque.Fig. 9-12 Torque‐speed characteristic of induction motors.Fig. 9-13 Operation of an induction motor.Fig. 9-14 Regenerative braking in induction motors.Fig. 9-15 Example 9-5.Fig. 9-16 Reversing the direction of rotation in an induction motor.Fig. 9-17 Space vectors with the effect of rotor leakage flux included.Fig. 9-18 Rated voltage applied.Fig. 9-19 Blocked rotor and slip‐frequency voltages applied.Fig. 9-20 Splitting the rotor resistance into the loss component and power o...Fig. 9-21 (a) Per‐phase equivalent circuit including the stator leakage and ...Fig. 9-22 (a) No‐load test and (b) blocked‐rotor test.Fig. 9-23 (a) Torque‐speed characteristic and (b) current‐speed characterist...Fig. 9-24 Typical performance curves for Design B 10 kW, 4‐pole, three‐phase...Fig. 9-25 Typical torque‐speed characteristics of NEMA design A, B, C, and D...Fig. 9-26 Available acceleration torque during start‐up.10 Chapter 10Fig. 10-1 Block diagram of an induction‐motor drive.Fig. 10-2 Operation characteristics with constant
.Fig. 10-3 Example 10-1.Fig. 10-4 (a) Per‐phase equivalent circuit in balanced steady state, (b) equ...Fig. 10-5 Relation of applied voltage and frequency at the rated flux densit...Fig. 10-6 Example 10-2.Fig. 10-7 Start‐up considerations in induction‐motor drives.Fig. 10-8 Capability below and above the rated speed.Fig. 10-9 Induction‐generator drives.Fig. 10-10 Speed control of induction‐motor drives.Fig. 10-11 PPU of induction‐motor drives.Fig. 10-12 (a) PPU output voltage waveforms and (b) harmonic spectrum of L‐L...Fig. 10-13 Per‐phase equivalent circuit (a) at the fundamental frequency and...Fig. 10-14 (a) Equivalent circuit for fundamental and harmonic frequencies i...Fig. 10-15 Real‐time model to obtain induction motor torque‐speed characteri...Fig. 10-16 Real‐time induction motor closed‐loop speed control.Fig. 10-17 Hardware result of closed‐loop speed control.11 Chapter 11Fig. 11-1 Stator windings.Fig. 11-2 Three‐phase windings.Fig. 11-3 Single‐phase magnetizing inductance Lm,one‐phase and leakage...Fig. 11-4 Mutual inductance Lmutual.Fig. 11-5 Rotor circuit represented by three‐phase windings.Fig. 11-6 Space vector representation of various mmf quantities.Fig. 11-7 Physical interpretation of stator current space vector.Fig. 11-8 Relationship between space vector and phasor in sinusoidal steady ...Fig. 11-9 All stator space vectors are collinear (rotor open‐circuited).Fig. 11-10 All rotor space vectors are collinear (stator open‐circuited).
12 Chapter 12Fig. 12-1 Representation of stator mmf by equivalent dq‐windings.Fig. 12-2 Representation of rotor mmf by equivalent dq‐winding currents.Fig. 12-3 Stator and rotor representation by equivalent dq‐winding currents....Fig. 12-4 Transformation of phase quantities into dq‐winding quantities: (a)...Fig. 12-5 Stator αβ and dq equivalent windings.Fig. 12-6 Rotor αβ and dq equivalent windings.Fig. 12-7 Calculating dq‐winding flux linkages and currents.Fig. 12-8 Torque on the rotor d‐axis.Fig. 12-9 Torque on the rotor q‐axis.Fig. 12-10 dq‐winding equivalent circuits: (a) d‐axis and (b) q‐axis.Fig. 12-11 Per‐phase equivalent circuit in steady state.Fig. 12-12 Induction motor model in terms of dq‐windings.Fig. 12-13 Simulation of Example 12-3.Fig. 12-14 Simulation results of Example 12-3.
13 Chapter 13Fig. 13-1 Stator and the rotor mmf representations by equivalent dq winding ...Fig. 13-2 Dynamic circuits with the d‐axis aligned with
.Fig. 13-3 The d‐axis circuit simplified with a current excitation.Fig. 13-4 Motor model with d‐axis aligned with .Fig. 13-5 Simulations of Example 13-1.Fig. 13-6 Results of Example 13-1.Fig. 13-7 Vector‐controlled induction motor with a CR‐PWM inverter.Fig. 13-8 Vector‐controlled induction motor drive with a current‐regulated P...Fig. 13-9 Design of the speed‐loop controller.Fig.