Название | An Introduction to the Finite Element Method for Differential Equations |
---|---|
Автор произведения | Mohammad Asadzadeh |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9781119671664 |
15 Appendind B: Appendind BAlgorithms and Matlab CodesAlgorithms and Matlab Codes B.1 A Matlab Code to Compute the Mass Matrix M for a Nonuniform Mesh B.2 Matlab Routine to Compute the L2‐Projection B.3 A Matlab Routine Assembling the Stiffness Matrix B.4 A Matlab Routine to Assemble the Convection Matrix B.5 Matlab Routine for Forward‐, Backward‐Euler, and Crank–Nicolson B.6 A Matlab Routine for Mass‐Matrix in 2d B.7 A Matlab Routine for a Poisson Assembler in 2d
16 Appendix C: Appendix CSample AssignmentsSample Assignments C.1 Assignment 1 C.2 Assignment 2
17 Appendix D: Appendix DSymbolsSymbols D.1 Table of Symbols
18 Bibliography
19 Index
List of Tables
1 Chapter 8Table 8.1 Some one‐dimensional finite elements.Table 8.2 Some two‐dimensional finite elements with triangular elements.Table 8.3 Some two‐dimensional finite elements with quadrilateral elements.Table 8.4 Some three‐dimensional finite elements with tetrahedron elements.
List of Illustrations
1 Chapter 1Figure 1.1 Tricomi equation: an example of a variable coefficient classifica...Figure 1.2 Outward unit normal
2 Chapter 2Figure 2.1 The hat function
3 Chapter 3Figure 3.1 Linear Lagrange basis functions for
4 Chapter 5Figure 5.1 A partition of