An Introduction to the Finite Element Method for Differential Equations. Mohammad Asadzadeh

Читать онлайн.
Название An Introduction to the Finite Element Method for Differential Equations
Автор произведения Mohammad Asadzadeh
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119671664



Скачать книгу

      

      Table of Contents

      1  Cover

      2  Preface

      3  Acknowledgments

      4  1 Introduction 1.1 Preliminaries 1.2 Trinities for Second‐Order PDEs 1.3 PDEs in, Further Classifications 1.4 Differential Operators, Superposition 1.5 Some Equations of Mathematical Physics

      5  2 Mathematical Tools 2.1 Vector Spaces 2.2 Function Spaces 2.3 Some Basic Inequalities 2.4 Fundamental Solution of PDEs1 2.5 The Weak/Variational Formulation 2.6 A Framework for Analytic Solution in 1d 2.7 An Abstract Framework 2.8 Exercises

      6  3 Polynomial Approximation/Interpolation in 1d 3.1 Finite Dimensional Space of Functions on an Interval 3.2 An Ordinary Differential Equation (ODE) 3.3 A Galerkin Method for (BVP) 3.4 Exercises 3.5 Polynomial Interpolation in 1d 3.6 Orthogonal‐ and L2‐Projection 3.7 Numerical Integration, Quadrature Rule 3.8 Exercises

      7  4 Linear Systems of Equations 4.1 Direct Methods 4.2 Iterative Methods 4.3 Exercises

      8  5 Two‐Point Boundary Value Problems 5.1 The Finite Element Method (FEM) 5.2 Error Estimates in the Energy Norm 5.3 FEM for Convection–Diffusion–Absorption BVPs 5.4 Exercises

      9  6 Scalar Initial Value Problems 6.1 Solution Formula and Stability 6.2 Finite Difference Methods for IVP 6.3 Galerkin Finite Element Methods for IVP 6.4 A Posteriori Error Estimates 6.5 A Priori Error Analysis 6.6 The Parabolic Case (a(t) ≥ 0) 6.7 Exercises

      10  7 Initial Boundary Value Problems in 1d 7.1 The Heat Equation in 1d 7.2 The Wave Equation in 1d 7.3 Convection–Diffusion Problems

      11  8 Approximation in Several Dimensions 8.1 Introduction 8.2 Piecewise Linear Approximation in 2d 8.3 Constructing Finite Element Spaces 8.4 The Interpolant 8.5 The L2 (Revisited) and Ritz Projections 8.6 Exercises

      12  9 The Boundary Value Problems in

N 9.1 The Poisson Equation 9.2 Stationary Convection–Diffusion Equation 9.3 Hyperbolicity Features 9.4 Exercises

      13  10 The Initial Boundary Value Problems in

N 10.1 The Heat Equation in N 10.2 The Wave Equation in d 10.3 Exercises

      14  Appendix A: Appendix AAnswers to Some ExercisesAnswers to Some Exercises Chapter 1. Exercise Section 1.4.1 Chapter 1. Exercise Section 1.5.4 Chapter 2. Exercise Section 2.11 Chapter 3. Exercise Section 3.5