Global Navigation Satellite Systems, Inertial Navigation, and Integration. Mohinder S. Grewal

Читать онлайн.
Название Global Navigation Satellite Systems, Inertial Navigation, and Integration
Автор произведения Mohinder S. Grewal
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119547815



Скачать книгу

1.1 A sampling of inertial sensor types.

      2 Chapter 2Table 2.1 Example with four satellites.

      3 Chapter 3Table 3.1 INS and inertial sensor performance ranges.

      4 Chapter 4Table 4.1 Components of ephemeris data.Table 4.2 Algorithm for computing satellite position.Table 4.3 Key GPS signals and parameters. Table 4.4 Key Galileo signals and parameters.Table 4.5 Key BeiDou signals and parameters.Table 4.6 Key QZSS signals and parameters.

      5 Chapter 7Table 7.1 Representative Kalman filter parameter values.

      6 Chapter 8Table 8.1 Worldwide SBAS system coverage.Table 8.2 Code‐carrier coherence results.Table 8.3 Cases used in geometry‐per‐station analysis.

      7 Chapter 9Table 9.1 List of SBAS error sources.

      8 Chapter 10Table 10.1 Basic Kalman filter equations.Table 10.2 Information filter equations.Table 10.3 Square‐root information filter using triangularization.

and
are or...Table 10.4 Extended Kalman filter modificationsTable 10.5 Unscented transform samples and weights.Table 10.6 Example state vector for standalone GNSS navigation.

      9 Chapter 11Table 11.1 List of symbols and approximations used.Table 11.2 State variables for the nine core INS errors.Table 11.3 Dynamic coefficient sub‐matrix sources.Table 11.4 Equation references for dynamic coefficient sub‐matrices.

      10 2Table B.1 Multiplication of quaternion basis matrices.

      11 3Table C.1 Sample univariate PDF statistics

      List of Illustrations

      1 Chapter 2Figure 2.1 Parameters defining satellite orbit geometry.Figure 2.2 Six GPS orbit planes inclined 55° from the equatorial plane.Figure 2.3 Two transmitters with known 2D positions.Figure 2.4 DOP hierarchy.

      2 Chapter 3Figure 3.1 Inertial sensor assembly (ISA) components.Figure 3.2 Inertially stabilized IMU alternatives.Figure 3.3 Tuning fork gyroscope.Figure 3.4 MEMS tuning fork gyroscope.Figure 3.5 Common input–output error types.Figure 3.6 Gyro error compensation example.Figure 3.7 Directions of modeled sensor cluster errors.Figure 3.8 Equipotential surface models for Earth.Figure 3.9 WGS84 geoid heights.Figure 3.10 Ellipse and osculating circles.Figure 3.11 Transverse osculating circle.Figure 3.12 Radii of WGS84 reference ellipsoid.Figure 3.13 Gyrocompassing determines sensor orientations with respect to east...Figure 3.14 Strapdown attitude representations.Figure 3.15 Coning motion.Figure 3.16 Coning error for 1° cone angle, 1 kHz coning rate.Figure 3.17 Rotation vector representing coordinate transformation.Figure 3.18 Coordinates for strapdown navigation with whole‐angle gyroscopes.Figure 3.19 Attitude representation formats and MATLAB® transformations.Figure 3.20 Simplified control flow diagram for three gimbals.Figure 3.21 Essential navigation signal processing for strapdown INS.Figure 3.22 Outputs (in angular brackets) of simple strapdown INS.Figure 3.23 Essential navigation signal processing for gimbaled INS.

      3 Chapter 4Figure 4.1 Block diagram of GPS signal generation at L1 and L2 frequencies. No...Figure 4.2 GPS C/A signal structure at L1 generation illustration.Figure 4.3 GPS P(Y) signal structure at L1 generation illustration.Figure 4.4 GPS navigation data format (legacy) frame structure. a Same data tran...Figure 4.5 Relationship between GPS HOW counts and TOW counts [2].Figure 4.6 Geometric relationship between true anomaly v and eccentric anomaly...Figure 4.7 Illustration of autocorrelation functions of GPS PRN codes.Figure 4.8 Illustration of power spectrum of GPS spreading codes.Figure 4.9 Despreading of the spreading code.Figure 4.10 A modernized GPS signal spectrum. psd, power spectral density.Figure 4.11 A Galileo signal spectrum. psd, power spectral density.

      4 Chapter 5Figure 5.1 Illustration of GNSS frequency and bandwidth (BW) for various GNSSs...Figure 5.2 Antenna configuration for reception of a GNSS RHCP signal. (a) Top ...Figure 5.3 Illustration of a GNSS antenna bandwidth using a 2.0 : 1.0 SWR metr...Figure 5.4 Patch antenna aviation form factors (with radome) [14].Figure 5.5 Illustration of a single‐frequency edge‐fed patch antenna. (a) Edge...Figure 5.6 Passive probe‐fed patch antenna with a coaxial/connector output.Figure 5.7 Probe‐fed patch antenna with capacitive coupler ring.Figure 5.8 Dual probe‐fed patch antenna with separate quadrature power combine...Figure 5.9 Photograph of a low‐cost active single‐frequency probe‐fed RHCP GPS...Figure 5.10 Dual probe‐fed, RHCP, multifrequency GNSS patch antenna.Figure 5.11 Typical choke ring‐based GNSS antenna configuration.Figure 5.12 Photograph of a 3D choke ring [30].Figure 5.13 Spiral GNSS antenna (spiral and can only) [31].Figure 5.14 GNSS‐850 antenna (radome removed) plane [34].Figure 5.15 Typical radiation characteristics of the wideband GNSS‐850 antenna...Figure 5.16 General block diagram of a GNSS adaptive antenna array.Figure 5.17 Illustration of theoretical seven‐element CRPA array factor (with ...

      5 Chapter 6Figure 6.1 Generic block diagram of GNSS receiver. PR: pseudorange; CP: carri...Figure 6.2 Generic GNSS receiver RF front end and IF signal conditioning circ...Figure 6.3 Signal search method.Figure 6.4 Sequential frequency search strategy.Figure 6.5 Illustration of tradeoff between P D and P FA.Figure 6.6 Global and confirmation search regions.Figure 6.7 Generic GNSS receiver code tracking loop.Figure 6.8 Code tracking loop error signal (open loop).Figure 6.9 Generic GNSS receiver carrier tracking loop.Figure 6.10 Pseudorange measurement concept.Figure 6.11 Theoretically achievable C/A‐code pseudorange error.Figure 6.12 Theoretically achievable carrier phase measurement error.Figure 6.13 Theoretically achievable frequency estimation error.

      6 Chapter 7Figure 7.1 Bilinear interpolation.Figure 7.2 Effect of multipath on C/A‐code cross‐correlation function.Figure 7.3 Reduced multipath error with larger precorrelation bandwidth.Figure 7.4 Multipath‐mitigating reference code waveform.Figure 7.5 Compression of the received signal.Figure 7.6 Performance of various multipath mitigation approaches.Figure 7.7 Residual multipath phase error using MMT algorithm.Figure 7.8 Schematic of a rubidium atomic clock. RF: radio frequency.Figure 7.9 Crystal clock error model.Figure