Advances in Electric Power and Energy. Группа авторов

Читать онлайн.
Название Advances in Electric Power and Energy
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119480440



Скачать книгу

3, 4 1 1 0 Q 1 1 0 0 V 4 1 1 0 Q 1, 3 1 0 0 Q 4, 2 0 0 0 V 2 0 1 1 Q 4, 3 0 1 0

      In Table 2.12, note that the sum of the optimal binary variables for the LMS and LTS estimators is equal to 11, i.e. to the median. However, the LMR procedure only rejects one measurement. This residual corresponds to measurement V2.

Estimators
x true WLS LAV QC QL LMS LTS LMR
V1 (p.u.) 1.000 0.994 0.993 1.000 0.998 0.996 0.985 1.000
V2 (p.u.) 0.985 0.979 0.978 0.985 0.983 0.981 0.970 0.985
V3 (p.u.) 0.973 0.967 0.965 0.972 0.970 0.969 0.976 0.972
V4 (p.u.) 1.020 1.014 1.013 1.020 1.018 1.030 1.023 1.020
θ1 (rad) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
θ2 (rad) −0.008 −0.008 −0.008 −0.008 −0.008 −0.008 −0.008 −0.008
θ3 (rad) −0.025 −0.025 −0.025 −0.025 −0.025 −0.025 −0.028 −0.025
θ4 (rad) 0.038 0.038 0.038 0.038 0.038 0.035 0.034 0.038

      In Table 2.13, note that the best estimates are provided by the QC and LMR estimators, while the performance of the LTS procedure is poor. Note that this conclusion is withdrawn considering only one measurement scenario, a particular metering configuration, and a small 4‐bus system. In order to obtain statistically sound conclusions, the following section provides a detailed analysis of both the numerical and computational behaviors of the aforementioned algorithms, considering 100 measurement scenarios, different measurement configurations, and a large system.

      2.5.10 Case Study

      For statistical consistency, each analysis is carried out by considering 100 measurement scenarios. Each measurement scenario is synthetically generated from the solution of a converged power flow by adding Gaussian‐distributed random errors to the corresponding true values.

      Each scenario involves:

      1 A random active/reactive power consumption level.

      2 Random locations of voltage and active/reactive power meters (ensuring observability of the whole system).

      3 A random redundancy level.

      4 Gaussian‐distributed random errors in all measurements (standard deviations of 0.01 and 0.02 p.u. for voltage and power measurements, respectively).

      The computational analysis of this chapter has been performed using MINOS [11] and SBB [31] solvers